
MON 20/20

Software for Gas Chromatographs

Applies to all Emerson XA Series Gas Chromatographs

MON 20/20 Software for Gas Chromatographs User Manual

NOTICE

DANIEL MEASUREMENT AND CONTROL, INC. AND ROSEMOUNT ANALYTICAL (COLLECTIVELY, "SELLER") SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS IN THIS MANUAL OR OMISSIONS FROM THIS MANUAL. SELLER MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THIS MANUAL AND, IN NO EVENT, SHALL SELLER BE LIABLE FOR ANY SPECIAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PRODUCTION, LOSS OF PROFITS, ETC.

PRODUCT NAMES USED HEREIN ARE FOR MANUFACTURER OR SUPPLIER IDENTIFICATION ONLY AND MAY BE TRADEMARKS/REGISTERED TRADEMARKS OF THESE COMPANIES.

THE CONTENTS OF THIS PUBLICATION ARE PRESENTED FOR INFORMATIONAL PURPOSES ONLY, AND WHILE EVERY EFFORT HAS BEEN MADE TO ENSURE THEIR ACCURACY, THEY ARE NOT TO BE CONSTRUED AS WARRANTIES OR GUARANTEES, EXPRESSED OR IMPLIED, REGARDING THE PRODUCTS OR SERVICES DESCRIBED HEREIN OR THEIR USE OR APPLICABILITY. WE RESERVE THE RIGHT TO MODIFY OR IMPROVE THE DESIGNS OR SPECIFICATIONS OF SUCH PRODUCTS AT ANY TIME.

SELLER DOES NOT ASSUME RESPONSIBILITY FOR THE SELECTION, USE OR MAINTENANCE OF ANY PRODUCT. RESPONSIBILITY FOR PROPER SELECTION, USE AND MAINTENANCE OF ANY SELLER PRODUCT REMAINS SOLELY WITH THE PURCHASER AND END-USER.

DANIEL AND THE DANIEL LOGO ARE REGISTERED TRADEMARKS OF DANIEL MEASUREMENT AND CONTROL, INC. ROSEMOUNT AND THE ROSEMOUNT ANALYTICAL LOGO ARE REGISTERED TRADEMARKS OF ROSEMOUNT ANALYTICAL. THE EMERSON LOGO IS A TRADEMARK AND SERVICE MARK OF EMERSON ELECTRIC CO.

COPYRIGHT $^{\odot}$ 2010 BY DANIEL MEASUREMENT AND CONTROL, INC., HOUSTON, TEXAS, U.S.A.

All rights reserved. No part of this work may be reproduced or copied in any form or by any means - graphic, electronic, or mechanical — without first receiving the written permission of Daniel Measurement and Control, Inc. Houston, Texas, U.S.A.

WARRANTY

1. LIMITED WARRANTY: Subject to the limitations contained in Section 2 herein and except as otherwise expressly provided herein, Daniel Measurement and Control, Inc. and Rosemount Analytical, (collectively"Seller") warrants that the firmware will execute the programming instructions provided by Seller, and that the Goods manufactured or Services provided by Seller will be free from defects in materials or workmanship under normal use and care until the expiration of the applicable warranty period. Goods are warranted for twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller, whichever period expires first. Consumables and Services are warranted for a period of 90 days from the date of shipment or completion of the Services. Products purchased by Seller from a third party for resale to Buyer ("Resale Products") shall carry only the warranty extended by the original manufacturer. Buyer agrees that Seller has no liability for Resale Products beyond making a reasonable commercial effort to arrange for procurement and shipping of the Resale Products. If Buyer discovers any warranty defects and notifies Seller thereof in writing during the applicable warranty period, Seller shall, at its option, promptly correct any errors that are found by Seller in the firmware or Services, or repair or replace F.O.B. point of manufacture that portion of the Goods or firmware found by Seller to be defective, or refund the purchase price of the defective portion of the Goods/Services. All replacements or repairs necessitated by inadequate maintenance, normal wear and usage, unsuitable power sources, unsuitable environmental conditions, accident, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer's expense. Seller shall not be obligated to pay any costs or charges incurred by Buyer or any other party except as may be agreed upon in writing in advance by an authorized Seller representative. All costs of dismantling, reinstallation and freight and the time and expenses of Seller's personnel for site travel and diagnosis under this warranty clause shall be borne by Buyer unless accepted in writing by Seller. Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller. Except as otherwise expressly provided in the Agreement, THERE ARE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY OTHER MATTER WITH RESPECT TO ANY OF THE GOODS OR SERVICES. It is understood that corrosion or erosion of materials is not covered by our guarantee.

2. LIMITATION OF REMEDY AND LIABILITY: SELLER SHALL NOT BE LIABLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE. THE SOLE AND EXCLUSIVE REMEDY FOR BREACH OF WARRANTY HEREUNDER SHALL BE LIMITED TO REPAIR, CORRECTION, REPLACEMENT OR REFUND OF PURCHASE PRICE UNDER THE LIMITED WARRANTY CLAUSE IN SECTION 1 HEREIN. IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT OR OTHERWISE), SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXCEED THE PRICE TO BUYER OF THE SPECIFIC GOODS MANUFACTURED OR SERVICES PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER'S LIABILITY TO BUYER AND/OR ITS CUSTOMERS EXTEND TO INCLUDE INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES. THE TERM "CONSEQUENTIAL DAMAGES" SHALL INCLUDE, BUT NOT BE LIMITED TO, LOSS OF ANTICIPATED PROFITS, LOSS OF USE, LOSS OF REVENUE AND COST OF CAPITAL.

IMPORTANT INSTRUCTIONS

- Read all instructions prior to installing, operating, and servicing this product.
- Follow all warnings, cautions, and instructions marked on and supplied with this product.
- Inspect the equipment packing case and if damage exists, notify your local carrier for liability.
- Open the packing list and carefully remove equipment and spare or replacement parts from the case. Inspect all equipment for damage and missing parts.
- If items are damaged or missing, contact the manufacturer at 1 (713) 827-6314 for instructions about receiving replacement parts.
- Install equipment as specified per the installation instructions and per applicable local and national codes. All connections shall be made to proper electrical and pressure sources.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent personal injury.
- Use of this product for any purpose other than its intended purpose may result in property damage and/or serious injury or death.
- Before opening the flameproof enclosure in a flammable atmosphere, the electrical circuits must be interrupted.
- Repairs must be performed using only authorized replacement parts as specified by the manufacturer. Use of unauthorized parts can affect the product's performance and place the safe operation of the product at risk.
- When installing or servicing ATEX-certified units, the ATEX approval applies only to equipment without cable glands. When mounting the flameproof enclosures in a hazardous area, only flameproof cable glands certified to IEC 60079-1 must be used.
- Technical assistance is available <u>24 hours a day, 7 days a week</u> by calling 1 (713) 827-6314.

This page is intentionally left blank.

Table of Contents

Section 1: Getting started	What's new in MON 20/201-3Getting started with MON 20/201-6System requirements1-6Installing MON 20/201-7Launching MON 20/201-7Registering MON 20/201-7Setting up the data folder1-9Configuring MON 20/20 to connect to a gas1-10Importing or exporting the GC directory table1-13Launching MON 20/20 from the SNAP-ON for1-15DeltaV1-15Launching MON 20/20 from the AMS DeviceManager1-17The MON 20/20 user interface1-20Connecting from a gas chromatograph1-28Procedures guide1-30Configuring a gas chromatograph1-33Editing a configuration file1-33Saving a gas chromatograph's current1-35Importing a configuration file1-37Operating modes for MON 20/201-37Viewing the Physical Name column1-37Selecting the GC's networking protocol1-37
Section 2: Using the chromatograph functions	Using the context-sensitive variable selector

	Working with a chromatogram2-2Editing a chromatogram trace2-2Viewing chromatogram results2-2Saving a chromatogram trace2-2Removing a chromatogram trace from view2-2Forcing a calibration2-2Controlling the display of data in the Timed Eventsand Components tables2-2Saving a comparison file2-3Opening a comparison file2-3Working with the Timed Events table2-3Working with the Timed Events table2-3Editing Timed Events from the Time Events2-3Window2-3Liging the Chromatogram Viewer's cursor to2-3Update a Timed Event2-3Working with the Component Data Table2-3Editing retention times from the Chromatogram2-3Viewer2-3Setting the gas chromatograph's date and time2-4Adjusting daylight savings2-4	21 23 25 26 27 28 30 31 32 33 35 37 38 30 31 32 33 35 37 38 30 31 32 33 35 36 37 38 39 30 31 32 33 35 36 37 38 39 30 31 32 33 35 36 37 38 39 30 31 32 33 35 36 37 38
Section 3: Using the hardware functions	Controlling the temperature of the gas chromatograph's heaters 3- Renaming a heater 3- Setting the heater's type 3- Monitoring the temperature of a heater 3- Monitoring the operational status of a heater 3- Setting the desired temperature 3- Setting PWM Output 3- Removing a heater from service 3- Configuring the valves 3-1 Renaming a valve 3-1 Setting a valve's operational mode 3-1 Setting the operational status of a valve 3-1 Setting the usage mode for a valve 3-1 Setting the usage mode for a valve 3-1 Inverting the polarity of a valve 3-1 Setting the usage mode for a valve 3-1 Offsetting the baseline 3-1 Offsetting the baseline 3-1 Inverting the FID flame 3-2 Resetting the preamp value 3-2 Balancing the preamp 3-2	-2 -3 -5 -6 -7 -9 10 12 13 14 15 17 19 21 22

	Managing your gas chromatograph's discrete inputs
	Setting the scale values for an analog input device
Section 4: Using the Application functions	Managing the system.4-2Managing Component Data Tables.4-5Editing a Component Data Table.4-6Adding a component to a Component DataTable.4-10Removing a component from a ComponentData Table.4-12Viewing the standard values for a component.4-13Viewing raw data.4-15Managing timed events.4-17Editing valve events.4-20Editing integration events.4-26Setting the cycle and analysis time.4-29Removing an event from the Timed Event.4-31Adding an event to the Timed Event Table.4-31

	Managing Validation Data Tables	. 4-35
	Managing calculations	. 4-37
	Setting standard calculations by stream	. 4-37
	Editing average calculations	. 4-39
	Viewing an archive of averages for a given variable	. 4-42
	Copying stream settings	. 4-44
	Copying component settings	
	Creating Custom Calculations	. 4-47
	Inserting a Comment	. 4-54
	Inserting a Conditional Statement	. 4-56
	Inserting an Expression	. 4-59
	Creating a Constant	. 4-61
	Creating or Editing a Temporary Variable	. 4-63
	Inserting a System Variable	. 4-64
	Using User-defined Calculations	. 4-65
	Setting the calculation method	. 4-67
	Setting alarm limits	. 4-69
	Managing system alarms	
	Managing streams	. 4-74
	Designating how a stream will be used	. 4-74
	Assigning a valve to a stream and setting the	
	relationship between the stream's open state to	
	the valve's On/Off state	. 4-76
	Assigning a data table to a particular stream	. 4-77
	Changing the base pressure for a stream	
	Creating a stream sequence for a detector	
	Communications	
	Creating or editing registers	
	Creating a new map file	
	Assigning a variable to a register	
	Viewing or editing scales	
	Configuring the gas chromatograph's Ethernet port	
	Working with local operator interface variables	
	Mapping Foundation Fieldbus variables	
	11 0	
Section 5:	Viewing and clearing alarms	
Logs and reports	Viewing unacknowledged and active alarms	
5 1	Acknowledging and clearing alarms	
	Viewing the alarm log	
	Viewing the maintenance log	
	Adding an Entry to the Maintenance Log	
	Deleting an entry from the maintenance log	
	Working with the parameter list	
	Viewing and editing the parameter list	
	Importing and exporting the parameter list	
	Working with drawings and documents	
	Viewing drawings or documents	. 5-15

	Adding files to the GC.5-Deleting files from the GC.5-Viewing the event log.5-Displaying reports.5-Understanding report types.5-Viewing reports from live data.5-Viewing a saved report.5-Viewing reports based on archived data.5-Viewing analysis and calibration reports basedon archived data.5-Viewing average reports based on archived data.5-Viewing trend data.5-Viewing trend data.5-Viewing saved trend data.5-Viewing with the Trend Graph.5-Editing the display properties of the graph.5-Editing a trend graph.5-Editing a trend graph.5-Editing a trend graph.5-Editing a trend graph.5-Entering a description for a trend graph.5-Saving a trend trace.5-Removing a trend graph from view.5-Displaying trend data.5-Displaying trend dat	$\begin{array}{c} .18 \\ .19 \\ .22 \\ .32 \\ .35 \\ .37 \\ .37 \\ .41 \\ .44 \\ .46 \\ .50 \\ .52 \\ .54 \\ .58 \\ .59 \\ .60 \\ .61 \\ .62 \\ .65 \\ .65 \\ \end{array}$
Section 6: Controlling Analyses	The molecular weight vs. response factor graph 5- Halting an analysis 6 Auto sequencing 6 Analyzing a single stream 6 Calibrating the gas chromatograph 6 Validating the Gas Chromatograph 6 Stopping an Analysis Run 6	6-1 6-2 6-4 6-5 6-7
Section 7: Using MON 20/20 Tools	Using the Modbus Test program 7 Comparing Modbus protocols 7 Setting communication parameters 7 Getting Modbus Data 7 Transmitting using a single data type 7 Setting the log parameters 7 Saving Modbus data 7 Printing Modbus data 7 Assigning scale ranges to User_Modbus registers 7 Troubleshooting communication errors 7	7-2 7-3 7-5 7-7 -10 -13 -15 -15 -15

Managing users	7
Creating users 7-2	20
Exporting a list of user profiles	21
Importing a list of user profiles	23
Editing users 7-2	26
Removing a user 7-2	27
Changing a user's password	28
Finding out who is connected to the gas	
chromatograph 7-3	30
8	
chromatograph 7-3	80
chromatograph	80 83
chromatograph	30 33 33
chromatograph	80 83 83 85

Appendix A: Component Data Table

Appendix B: Data computations	Data acquisitionB-1Peak detectionB-2Analysis computationsB-3Concentration analysis with response factorB-4Post analysis computationsB-6Liquid equivalent computationsB-6Heating value calculationsB-7Multi-level calibrationB-13Indirect calibrationB-14
Appendix C: Modbus registers list for 2350A GC	User_Modbus register list
Appendix D: Basic and advanced system variables	GPA system variablesD-1 ISO system variablesD-10
Appendix E: Creating custom calculations	Inserting a commentE-7Inserting a conditional statementE-9Inserting an expressionE-11Creating a constantE-14Creating or editing a temporary variableE-15Inserting a system variableE-16Using user-defined calculationsE-17

Section 1: Getting started

Welcome to MON 20/20—a menu-driven, Windows-based software program designed to remotely operate and monitor the Daniel[®] Danalyzer[™] XA series and the Rosemount[®] Analytical XA series of gas chromatographs.

MON 20/20 operates on an IBM-compatible personal computer (PC) running the Windows XP operating system or later.

MON 20/20 can initiate or control the following gas chromatograph (GC) functions:

- Alarm parameters
- Alarm and event processing
- Analog scale adjustments
- Analyses
- Baseline runs
- Calculation assignments and configurations
- Calibrations
- Component assignments and configurations
- Diagnostics
- Event sequences
- Halt operations
- Stream assignments and sequences
- Valve activations
- Timing adjustments

MON 20/20 can generate the following reports:

- 24-Hour Averages
- Analysis (GPA)
- Analysis (ISO)
- Calibration
- Final Calibration
- Validation
- Final Validation
- Hourly Averages
- Monthly Averages
- GC Configuration
- Raw Data
- Variable Averages
- Weekly Averages
- Dew Temperature Calculation (optional)

MON 20/20 can access and display the following GC-generated logs:

- Alarm Log
- Event Log
- Parameter List
- Maintenance Log

1.1 What's new in MON 20/20

Users familiar with MON2000 or MON2000 Plus will find a few changes when using MON 20/20:

- <u>Login security is at the gas chromatograph level instead of at the</u> <u>software level</u>. This means that you no longer have to log in after starting MON 20/20—but you do have to log in to the gas chromatograph to which you are trying to connect. For more information, see "Connecting to a gas chromatograph" on page 1-25.
- <u>An "administrator" role has been added to the list of user roles</u>. This new role has the highest level of authority and is the only role that can create or delete all other roles. For more information, see "Managing users" on page 7-17.
- <u>Multiple users can connect to the same gas chromatograph simultaneously</u>. By default, the first user to log in to the GC with "supervisor" authority will have read/write access; all other users, including other supervisor-level users, will have read access only. This configuration can be changed so that all supervisor-level users have read/write access regardless of who logs in first. For more information, see "Managing the system" on page 4-2.
- Users can display multiple windows within MON 20/20.
- <u>Automatic reconnection</u>. If MON 20/20 loses its connection with the GC, it automatically attempts to reconnect.
- <u>Users can view multiple instances of certain windows</u>. To aid in data processing or troubleshooting, MON 20/20 is capable of displaying more than one instance of certain data-heavy windows such as the Chromatogram Viewer and the Trend Data window.

- <u>Enhanced Chromatogram Viewer</u>. The following enhancements have been made to the Chromatogram Viwer:
 - <u>Users can view an unlimited number of chromatograms, in any</u> <u>configuration</u>. For example, a user can view an archived chromatogram and a live chromatogram. For more information, see "Viewing chromatograms" on page 2-1.
 - <u>The "Keep Last CGM" option</u>. Upon starting a new run, MON 20/ 20 can keep the most recently completed chromatogram on the graph for reference.
 - <u>Overview window</u>. When zoomed in to a smaller section of a chromatogram, the user can open a miniature 'overview' window that displays the entire chromatogram, for reference. For more information, see "Additional plot commands" on page 2-19.
 - <u>Older chromatograms available</u>. MON 20/20 has access to archived chromatograms as old as four or five days. For more information, see "Viewing an archived chromatogram" on page 2-5.
 - <u>Full screen mode</u>. For more information, see "Working with the graph" on page 2-15.
 - <u>Protected chromatograms</u>. Chromatograms that you designate as "protected" will not be deleted. For more information, see "Protecting or unprotecting an archived chromatogram" on page 2-9.
- <u>The "Invert Polarity "option</u>. This feature reverses a device's effect. For more information, see "Inverting the polarity of a valve" on page 3-14 and "Inverting the polarity of a discrete input" on page 3-28.
- <u>Streamlined variables-picking menu</u>. The method for selecting variables for calculations and other purposes is contained within one simple, self-contained menu. For more information, see "Using the context-sensitive variable selector" on page 1-42.
- <u>GC Time</u>. The GC Status Bar displays the date and time based on the GC's physical location, which may be different than the PC's location. For more information, see "Setting the gas chromatograph's date and time" on page 2-40.
- <u>Daylight savings time</u>. You have option of enabling a GC's daylight savings time feature. Also, there are two options for setting the start and end times for daylight savings time on the GC. For more information, see "Adjusting daylight savings" on page 2-42.

- <u>Baseline offsetting</u>. In some situations that involve TCD detectors the baseline may be displayed either too high on the graph, in which case the tops of the peaks are cut off, or too low on the graph, so that the bases of the peaks are cut off. If this occurs it is possible to offset the baseline either up or down so that the entire peak can be displayed on the graph. This offset will be applied to all traces—live, archived and saved—that are displayed thereafter. For more information, see "Viewing raw data" on page 2-38.
- <u>Microsoft Excel-based Parameter List</u>. The Parameter List has been expanded to offer seven pages of information, and is Microsoft® Excelbased to allow for access outside of MON 20/20. The document can be imported to and exported from GCs. For more information, see "Working with the parameter list" on page 5-10.
- <u>Optional Foundation Fieldbus variables</u>. If your GC is installed with a Foundation Fieldbus, you can map up to 64 GC variables to monitor using the AMS Suite. For more information, see "Mapping Foundation Fieldbus variables" on page 4-98.
- <u>Optional local operator interface (LOI) variables</u>. If your GC is installed with an LOI, you can configure up to 25 GC parameters to monitor using the LOI's *Display* mode. For more information, see "Working with local operator interface variables" on page 4-96.
- <u>Access to GC-related drawings such as flow diagrams, assembly</u> <u>drawings, and electrical diagrams</u>.
- <u>Validation runs</u>. During a validation run, the GC performs a test analysis to verify that it is working properly. For more information, see "Managing Validation Data Tables" on page 4-35 and "Validating the Gas Chromatograph" on page 6-7.

User Manual 3-9000-745

1.2 Getting started with MON 20/20

This section covers such issues as installing, registering and setting up the software, as well as configuring MON 20/20 to meet your specific needs.

1.2.1 System requirements

To achieve maximum performance when running MON 20/20, ensure your PC meets the following specifications:

- Software
 - Windows[®] XP (Service Pack 2 or later), Windows[®] Vista, or Windows[®] 7.
 - Internet Explorer[®] 6.0 or later.
- Hardware
 - PC with a 400 MHz Pentium or higher processor.
 - 256 MB of RAM or higher.
 - 100 MB of free hard disk space. (An additional 280 MB is required on Windows[®] XP if .NET 2.0 is not previously installed.)
 - Super VGA monitor with 1024x768 or higher resolution.
 - For on-line operations, one serial port available for remote/local connection to gas chromatograph.
 - For on-line operations, one Ethernet port available for remote/local connection to gas chromatograph.
 - For remote connection only, a Windows[®]-compatible modem.
 - Windows[®]-compatible printer (optional)

1.2.2 Installing MON 20/20

You must install MON 20/20 from the Emerson Process Management MON 20/20 Software for Gas Chromatographs CD-ROM onto your hard drive; you cannot run the program from the CD-ROM.

Double-click the **Setup** file and follow the on-screen installation instructions.

Upon successful installation, MON 20/20 creates a shortcut icon on the computer's desktop.

Note

MON 20/20 is not an upgrade to MON2000; therefore, MON 20/20 should be installed to its own directory, separate from the MON2000 directory.

Note

You must be logged onto the computer as an administrator to install MON 20/20. Vista and Windows 7 users, even with administrator privileges, will be prompted by the operating system's User Account Control feature to allow or cancel the installation.

1.2.3 Launching MON 20/20

To launch MON 20/20, double-click its desktop icon or click the **Start** button and select *Emerson Process Management* \rightarrow *MON 20/20*.

1.2.4 Registering MON 20/20

Each time you start MON 20/20 it will prompt you to register if you have not already done so. <u>To delay or suspend this registration prompt, see</u> Step 3.

Note An active Internet connection is required to register.

Registering your copy of MON 20/20 allows you to receive information about free updates and related products.

Figure 1-1. The Register MON 20/20 window, page 1

< Back	

- 1. Enter your name, your company's name, and the serial number for your copy of MON 20/20 into the appropriate fields on the *Register MON 20/20* window.
- 2. Click **Next** to continue.
- 3. Choose the desired registration method by clicking the corresponding checkbox.

Figure 1-2. The Register MON 20/20 window, page 2

Register MON 20/20	×
Registration method <u>W</u> eb <u>E</u> -mail <u>P</u> int registration form Register later (<u>d</u> on't remind me) <u>Register later (<u>d</u>on't remind me</u>	
	< <u>B</u> ack Finish Cancel

Note

To delay registration, check **Register later (remind me)**. MON 20/20 will display the *Register MON 20/20* window the next time you start the program. To prevent the *Register MON 20/20* window from displaying with each program startup—and without registering—check **Register later (don't remind me)**.

Note

You can register at any time by selecting **Register MON 20/20...** from the *Help* menu.

4. Click **Finish**.

1.2.5 Setting up the data folder

The data folder stores GC-specific files such as reports and chromatograms. The default location for the data folder is **C:\GCXP Data**. If you want MON 20/20 to store its data in a different location—on a network drive, for instance—do the following:

- 1. Move the GCXP Data folder to its new location.
- 2. Select **Program Settings...** from the **File** menu.
- 3. The current location of the data folder displays in the *Data Folder* field.

Figure 1-3. The Program Settings window

Userin <u>a</u> me:	User Name	
Company <u>n</u> ame:	Company Name	
<u>D</u> ata folder:	C:\GCXP Data	Browse

To change the data folder's location, click on the **Browse** button that is located to the right of the *Data Folder* field.

4. Use the *Browse for Folder* window to navigate to the **GCXP Data** folder's new location and click **OK**.

Note

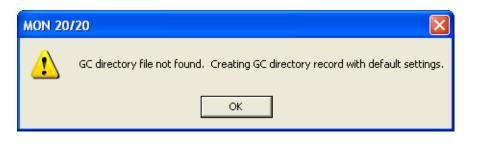
Another method for changing the folder location is to type the folder's location into the *Data Folder* field and press ENTER. When the "Create the folder?" message appears, click **Yes**.

5. The Data Folder field updates to display the new location.

Figure 1-4. The Program Settings window

User n <u>a</u> me:	User Name	_
Company <u>n</u> ame:	Company Name	_
<u>D</u> ata folder:	C:\GCXP Data	Browse

1.2.6 Configuring MON 20/20 to connect to a gas chromatograph


MON 20/20 can communicate via its Ethernet connection with any Ethernet-ready gas chromatograph.

To congifure MON 20/20 to connect to a GC, do the following:

1. Select GC Directory... from the File menu.

If this is the first time that this option was selected, you will get the following error message:

Figure 1-5. "GC directory file not found" message

If you get the "GC directory file not found" message, click **OK**. The *GC Directory* window appears and displays a table containing an inventory of the GCs to which MON 20/20 can connect.

2. If you are configuring the first GC connection for MON 20/20, there will be on one generic GC record listed in the window. To add another record, select **Add** from the *GC Directory* window's **File** menu. A new row will be added to the bottom of the table.

Figure 1-6. The GC directory window

GC Directory			X
File Table			
GC Name	Short Desc	GC Type Direct Modem Ethernet	
New GC Short description		700XA	
Direct Modem Ethernet	Sort Export Import	Save OK Cancel	
			11.

- 3. Click in the *GC Name* field and enter the name for the GC to which you want to connect.
- 4. Optionally, you can double-click in the *Short Desc* field and enter pertinent information about the GC to which you want to connect, such as its location. You can enter up to 100 characters in this field.

- 5. Select **Ethernet**. The *Ethernet Connection Properties for New GC* window appears.
- 6. In the *IP address* field, enter the IP address of the GC to which you want to connect.

Figure 1-7. The Ethernet Connection Properties for New GC window

Ethernet Conne	tion Properties for New GC	
	IP address: 172 . 16 . 17 . 200	
Network Protocols Comm Address Retries	[Not used] [Not used] [Not used]	
	OK (Cancel

Note

If you type in an invalid IP address, you will get an error message when MON 20/20 attempts to connect to the GC.

- 7. Click OK. When the Save changes? message appears, click Yes.
- 8. Repeat steps 2 through 7 for any other GCs to which you want to connect.
- 9. To delete a GC from the table, select the GC and then select **Delete** from the **File** menu.
- 10. To copy a GCs configuration information into a new row, select the GC and then select **Insert Duplicate** from the **File** menu.
- 11. To insert a row below a GC, select the GC and then select **Insert** from the **File** menu.
- 12. To sort the table alphebetically, select **Sort** from the **Table** menu or click **Sort** from the *GC Directory* window.
- 13. To copy the list of GCs to the clipboard to be pasted into another application, select **Copy Table to Clipboard** from the **Table** menu.
- 14. To print the list of GCs, select **Print Table...** from the **Table** menu.

15. To save the changes and keep the window open click **Save** from the *GC Directory* window. To save the changes and close the window, click **OK**. When the **Save changes**? message appears, click **Yes**.

For more details about configuring MON 20/20 connections, see "Configuring the gas chromatograph's Ethernet port" on page 4-95.

1.2.7 Importing or exporting the GC directory table

The *GC Directory* table, which contains the list of GCs that are currently configured for MON 20/20, can be saved as a DAT file to a PC or other storage media such as a compact disk or flash drive. This DAT file can be used to restored the GC directory information to the original application, or it can be used to quickly and easily configure other copies of MON 20/20 that are installed on other computers.

To save the *GC Directory* table to the PC, do the following:

1. Click **Export**. The *Export GC Directory* window displays.

Figure 1-8. The Export GC Directory

Export GC Directory
Select GC directory records to export: ✓ Austin/Short description ✓ Houston/Short description ✓ Phoenix/Short description
Select All OK Cancel

- 2. Select the checkbox for each gas chromatograph who information you want to save. If you want to save the entire list, click **Select All**.
- 3. Click **OK**. The *Export GC Directory File* save as dialog displays.
- 4. Choose a save location. The default location is GCXP Data.
- 5. The file is automatically given the name of **GC_DIRECTORY_EXPORT.DAT**. If you prefer a different name, type it into the *File name* field.
- 6. Click Save.

To import a GC Directory file, do the following:

1. Select GC Directory... from the File menu.

If this is the first time that this option was selected, you will get the following error message:

Figure 1-9. "GC directory file not found" message

If you get the "GC directory file not found" message, click **OK**. The GC *Directory* window appears

- 2. Click Import. The Import GC Directory File dialog displays.
- 3. Locate the GC directory file and select it. Click **Open**. The *GC Directory* window reappears with the list of newly configured GCs displayed in the *GC Directory* table.

1.2.8 Launching MON 20/20 from the SNAP-ON for DeltaV

This section assumes that DeltaV is installed on the PC along with MON 20/20.

Note

To successfully use MON 20/20 SNAP-ON for DeltaV, you must be familiar with using the DeltaV digital automation system.

To start MON 20/20, do the following:

- 1. Start the DeltaV Explorer by clicking on its desktop icon or by clicking the **Start** button and selecting $DeltaV \rightarrow Engineering \rightarrow DeltaV$ *Explorer*.
- 2. In the *Device Connection View*, open device icons by clicking once on each icon. Follow the path of connections until you locate the desired gas chromatograph icon.

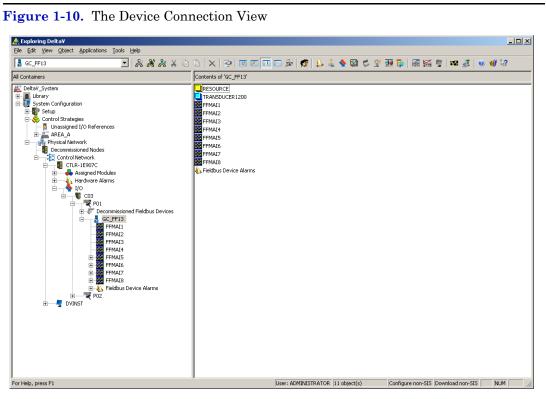
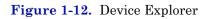


Figure 1-10. The Device Connection View

3. Right-click on a connected gas chromatograph icon to display the context menu.

kar Exploring Delta¥ File Edit View Object Applications Tools Help		
	▲ 3 × 2 Ⅲ Ⅲ Ⅲ Ⅲ □ 2 ダ ひ 4 ◆ 図 5 2 頭 示 頭 話 雪 ∞ 4 4 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1 1 0 - 4 1	
All Containers	Contents of 'P01'	
DeltaV_System DeltaV_System DeltaV_System DeltaV_System DeltaV_System DeltaV_System DeltaV_Setup DeltaV_Strategies DeltaV_Strategies Descrimissioned Voces Decommissioned Nodes Decommissioned Nodes Decommissioned Fieldbus Devices Decommissioned Fieldbus Decommissioned Fiel	F Decommissioned Fieldbus Devices APCLC Explore DFRNI Update Download Status PFRSTU Download PRSTU Yenfy without download PRSTU Wenfy without download PACCC Diagnose LINMN Decognission CMXRTK Commission MAXRS Replace MCRCY Upload Function Blocks MXNTR Open with AMS Device Manager MXNTR Configure MMUNF Compare PERDLS Service Tools PRTRL Overview Scontr Scan Device South Help PIT Brint Export Carp Copy Paste Delete Rename Rename What's this?	
	Properties OR 1 object(s) selected Configure non-SIS Download non-SIS NUM	

Figure 1-11. Right-click to view context menu


4. Select *SNAP-ON/Linked Apps* \rightarrow *Launch MON 20/20*. MON 20/20 starts and connects automatically to the GC.

1.2.9 Launching MON 20/20 from the AMS Device Manager

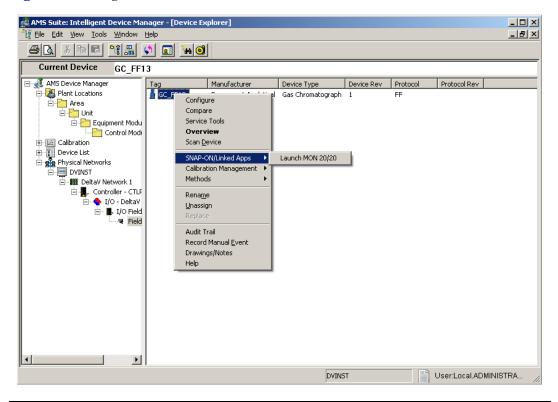
This section assumes that DeltaV and AMS are installed on the PC along with MON 20/20.

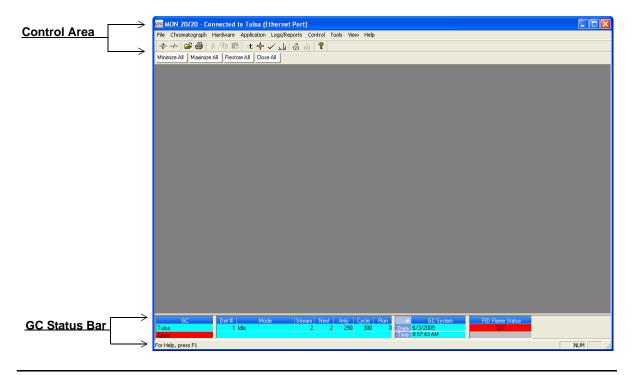
To start MON 20/20, do the following:

1. Start the AMS Device Manager by clicking on its desktop icon or by clicking the **Start** button and selecting AMS Device Manager \rightarrow AMS Device Manager.

🖁 AMS Suite: Intelligent Device M	anager - [Device Ex	plorer]					_ 🗆 ×
lğ Eile Edit ⊻iew Tools Window	Help						_ 8 ×
<u>a x Be P:</u>	📢 🔝 🙀 🎯						
Current Device GC_FI	13						
AMS Device Manager Plant Locations Area Unit Control Mod Control		Manufacturer Rosemount Analytical	Device Type Gas Chromatograph	Device Rev 1	FF	Protocol Rev	
eady	11		DVINS	т		User:Local.ADMIN	IISTRA

- 2. In the *Device Connection View*, open device icons by clicking once on each icon. Follow the path of connections until you locate the desired gas chromatograph icon.
- 3. Right-click on a connected gas chromatograph icon to display the context menu.




Figure 1-13. Right-click to view the context menu

4. Select *SNAP-ON/Linked Apps* \rightarrow *Launch MON 20/20*. MON 20/20 starts and connects automatically to the GC.

1.2.10 The MON 20/20 user interface

MON 20/20 has two areas of interaction: the Control Area, at the top of the program's main window, and the GC Status Bar, located at the bottom of the program's main window.

Figure 1-14. Features of the MON 20/20 main window

The main user interface

The main user interface of the main window contains the menus and icons that allow you to control MON 20/20 and the GC to which MON 20/20 is connected.

Figure 1-15. The Control Area

٠

<u>Titlebar</u> →	MON 20/20 - Connected to Houston (Ethernet Port)	
	Eile <u>C</u> hromatograph <u>H</u> ardware <u>Application Logs</u> /Reports Con <u>t</u> rol <u>T</u> ools <u>Vi</u> ew <u>H</u> elp	< <u> </u>
Toolbar >	≠ +- 🚅 🚭 券 🗈 🖻 "t 💠 🗸 山 🖾 📅 🦉	
	Minimize All Maximize All Restore All Close All	< Dialog Control Tabs

Titlebar - The Titlebar displays the name of the program, and well as the program's connection status. MON 20/20 has the following three overall status modes:

- <u>Not connected</u> If MON 20/20 is not connected to a GC, then "MON 20/20" displays in the Titlebar.
- <u>Connected</u> If MON 20/20 *is* connected to a GC, then "MON 20/20 Connected to" and the name of the GC and the connection type displays in the Titlebar.
- <u>Offline Edit</u> If MON 20/20 is in offline edit mode, then "MON 20/ 20 - Offline Edit *<filename>*" displays in the Titlebar.
- **Menu bar** The Menu bar contains the commands that allow you to control and monitor gas chromatographs.

• **Toolbar** - The Toolbar contains shortcut icons for the most important and/or most often used MON 20/20 commands. From the Toolbar you can do such things as connect to and disconnect from a GC, view chromatographs, and view help files.

<u>→</u>	Connect to a gas chromatograph.
-/-	Disconnect from a gas chromatograph.
*	Open a configuration file.
4	Print a GC configuration report.
۳ t	View the Timed Events window.
٠ģ•	View the Component Data window.
\checkmark	Clear or acknowledge alarms.
لىلىد	Open the CGM Viewer window.
123	Begin auto sequencing.
123 123	Halt auto sequencing.
ę	Open the About MON 20/20 window.

Table 1-1. Function of the shortcut icons on the Toolbar

• **Dialog Control Tabs bar** - The Dialog Control Tabs bar contains four buttons that allow you to manage the behavior of all windows that are open in the main window. The four buttons are **Minimize All, Maximize All, Restore All, and Close All.**

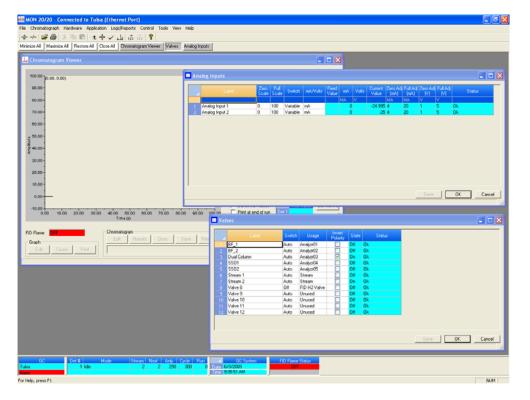
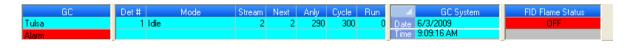


Figure 1-16. The main window showing the function of the Dialog Control Tabs bar


The bar also displays a button for each open window that allows you to select or deselect that window.

You can hide or display the Toolbar and the Dialog Control Tabs bar by clicking the appropriate option from the **View** menu.

The GC Status Bar

The GC Status Bar of the main window displays useful information about the status and functioning of the gas chromatograph to which MON 20/20 is connected.

Figure 1-17. The GC Status Bar

The GC Status Bar contains the following sections:

- **GC** The first row displays the name of the GC to which MON 20/20 is connected. If MON 20/20 is not connected to a GC, "Not Connected" displays in this row. If MON 20/20 loses its connection to the GC, "Comm Fail" displays in this row, and the program will automatically try to reconnect. The second row displays status flags such as active alarms (with red background), unacknowledged alarms (with red background), or File Edit modes.
- **Det #** Each row displays the identification number of the detector monitoring the alarm status of the connected GC. A GC can have a maximum of two detectors.
- **Mode** Each row displays the mode of the appropriate detector. Potential modes are: Idle, Auto Cal, Auto Base, Auto Anly, FCal.
- **Stream** Each row displays the current stream being analyzed by the appropriate detector.
- **Next** Each row displays the next stream to be analyzed by the appropriate detector.
- **Anly** Each row displays the analysis time for the appropriate stream.
- **Cycle** Each row displays the total cycle time, in seconds, before the next analysis starts for the appropriate detector.
- **Run** Each row displays the amount of time, in seconds, that has elapsed since the current cycle began for the appropriate detector.

- **GC System** Displays the date and time according to the GC to which MON 20/20 is connected. The date and time displayed may be different from the user's date and time, depending on the physical location of the GC.
- **FID Flame Status** Displays the status of the FID flame. Options are OFF with red background, ON with green background, and OVER TEMP with red background. The FID Flame Status indicator only displays on the GC Status Bar when the GC to which MON 20/20 is connected contains an FID detector.

You can hide or display the GC Status Bar by clicking **GC Status Bar** from the **View** menu.

1.2.11 Connecting to a gas chromatograph

To connect to a gas chromatograph, you must log on to it first. Most of MON 20/20's menus and options are inactive until you have logged on to a GC.

To connect to a GC, do the following:

1. There are two ways to start the process:

(a.) On the Toolbar, click $\stackrel{\Rightarrow}{\leftarrow}$.

(b.) Select **Connect...** from the **Chromatograph** menu.

2. The *Connect to GC* dialog, which displays a list of all the GCs to which you can connect, appears.

onnect to GC		
GC Name	Short Desc	
Houston	Short description	Ethernet
Sort		
Unsorted		
 Sort by name Reverse sort by name 	E di Dirachara	C 1
 neverse son by name 	Edit Directory	Cancel

Figure 1-18. The Connect to GC window

Note

If you want to edit the connection parameters for one or all GCs listed in the *Connect to GC* window, click Edit Directory. The GC Directory window will appear. See "Configuring MON 20/20 to connect to a gas chromatograph" on page 1-10 for more information.

Click the **Ethernet** button beside the GC to which you want to connect.

3. The *Login* dialog appears.

Figure 1-19. The Login window

Login	X
User Name:	
User PIN:	
OK Cancel	

Note

All GCs are shipped with two default user names: **daniel** and **emerson**. A user pin is not required when using either of these user names and both user names allow administrator-level access to the GC. To add a user pin to either of these user names or for information about creating and edit user names in general, see "Managing users" on page 7-17.

Enter a user name and user PIN and click **OK**. Once connected, the name of the GC appears under the GC column in the GC Status Bar.

Figure 1-20. The GC Status Bar showing a successful connection to a GC

Note

If you enter an invalid user name or password, the *Login* dialog will close without connecting to the GC.

1.2.12 Disconnecting from a gas chromatograph

Disconnecting from a GC will automatically log you off of the GC.

To disconnect from a gas chromatograph, do one of the following:

- On the Toolbar, click -/- .
- Select **Disconnect** from the **Chromatograph** menu.

Note

If you are connected to a GC and want to connect to a different GC, it is not necessary to disconnect first; simply connect to the second GC, and in the process MON 20/20 will disconnect from the first GC.

1.3 Keyboard commands

You can use the following keyboard keystrokes throughout the program:

Keystroke	Action
ARROW keys	 Moves cursor: Left or right in a data field. Up or down in a menu or combo box. Up or down (column), left or right (row) through displayed data entries.
DELETE	 Deletes the character after cursor. Deletes selected rows from a table or return row values to the default settings.
ENTER	Activates the default control element (e.g., the OK button) in current window.
ESC	Exits application or active window without saving data.
F1	Accesses context-sensitive help topics.
INSERT	Toggles between insert and type-over mode in selected cell.Inserts a new row above the highlighted row.
SHIFT+TAB	Moves to previous control element (e.g., button) or data field in window; see TAB description.

<i>Table 1-2.</i>	Frequently	Used Keystrokes
-------------------	------------	-----------------

Keystroke	Action
SPACE	Toggles settings (via radio buttons or check boxes).
TAB	Moves to the next control element (e.g., button) in the window; to use TAB key to move to next data field, select Program Settings from the File menu and clear the Tab from spreadsheet to next control check box.

 Table 1-2.
 Frequently Used Keystrokes (Continued)

You can use the following function keys from the main window:

Function Key	Action
F2	Starts the Auto-Sequencing function. See "Auto sequencing" on page 6-2 for more information.
F3	Halts the GC (e.g., an analysis run) at the end of the current cycle. See "Halting an analysis" on page 6-1 for more information.
F5	Displays the Timed Event table per specified stream. See "Managing timed events" on page 4-17 for more information.
F6	Displays the Component Data table per specified stream. See "Managing Component Data Tables" on page 4-5 for more information.
F7	Displays the chromatogram for the sample stream being analyzed. See "Viewing a live chromatogram" on page 2-3 for more information.
F8	Displays any chromatogram stored in the GC Controller. See "Viewing an archived chromatogram" on page 2-5 for more information.

Table 1-3. Main menu function keys

1.4 Procedures guide

Use the following table to look up the related manual section, menu path and, if appropriate, the keystroke for a given procedure.

Task or Data Item	Section(s)	Menu Path [Keystroke]	
24-hour average, component(s) measured	4.5.2	Application \rightarrow Calculations \rightarrow Averages	
Add a gas chromatograph	1.2.6	$\mathrm{File} \to \mathrm{GC} \ \mathrm{Directory}$	
Alarms, related components	4.2 4.8 3.4	Application \rightarrow Component Data [F6] Application \rightarrow Limit Alarms \rightarrow User Hardware \rightarrow Discrete Outputs	
Alarms, stream number(s) programmed	4.8	Application \rightarrow Limit Alarms \rightarrow User	
Analysis Report (on/off)	5.7.3	$Logs/Reports \rightarrow Printer Control$	
Analysis time	4.3.4	Application \rightarrow Timed Events [F5]	
Starting or ending auto-calibration	4.10	Application \rightarrow Streams	
Auto-calibration interval	4.10	Application \rightarrow Streams	
Auto-calibration start time	4.10	Application \rightarrow Streams	
Autocal time	4.10	Application \rightarrow Streams	
Baseline	4.10	Application \rightarrow Streams	
Base pressure used for calculations	4.10	Application \rightarrow Streams	
Calibration concentration	4.2	Application \rightarrow Component Data [F6]	
Calibration cycle time	4.3.4	Application \rightarrow Timed Events [F5]	
Calibration runs, number averaged	4.10	Application \rightarrow Streams	
Calibration runs, number of	4.10	Application \rightarrow Streams	
Calibration stream number	4.10	Application \rightarrow Streams	

Table 1-4. MON 20/20 Task List

Task or Data Item	Section(s)	Menu Path [Keystroke]
Communications	4.12	Application \rightarrow Communication Application \rightarrow Ethernet Ports
Component code and name	4.2	Application \rightarrow Component Data [F6]
Component full scale (for output)	4.1 3.6	Application \rightarrow System Hardware \rightarrow Analog Outputs
Component(s) programmed for input	3.5 3.3	Application \rightarrow Analog Inputs Application \rightarrow Discrete Inputs
Component(s) programmed for output	4.8 3.6 3.4	Application \rightarrow Limit Alarms \rightarrow User Hardware \rightarrow Analog Outputs Hardware \rightarrow Discrete Outputs
Component, retention time	4.2	Application \rightarrow Component Data [F6]
Component zero (for output)	3.6	Hardware \rightarrow Analog Outputs
Compressibility (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control
Current date	2.6	$\label{eq:chromatograph} Chromatograph \rightarrow View/Set~GC~Time$
Current time	2.6	$\label{eq:chromatograph} Chromatograph \rightarrow View/Set~GC~Time$
Cycle time	4.3.4	Application \rightarrow Timed Events [F5]
Delete alarms	4.8 5.1	Application → Limit Alarms Logs/Reports → Alarms → Alarm Log
Delete component from component list	4.2	Application \rightarrow Component Data [F6]
Delete inhibit, integration, peak width	4.3.4	Application \rightarrow Timed Events [F5]
Delete output(s)	$3.6 \\ 3.4$	Hardware → Analog Outputs Hardware → Discrete Outputs
Enable or disable multi-user write	4.1	Application \rightarrow System
Existing alarm(s)	5.1	$\operatorname{Logs/Reports} \rightarrow \operatorname{Alarms} \rightarrow \operatorname{Alarm} \operatorname{Log}$
Full-scale value (for input)	3.5	Hardware \rightarrow Analog Inputs
GPM liquid equivalent (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control

Table 1-4. MON 20/20 Task List

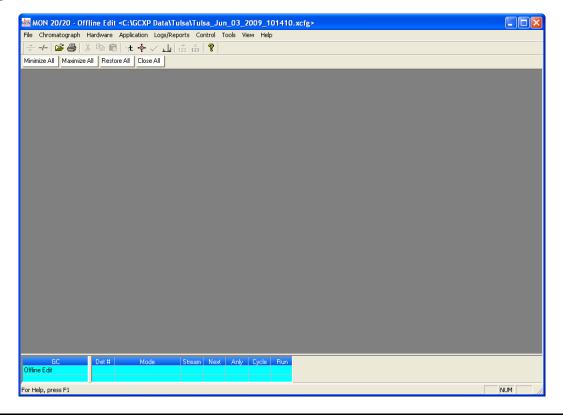
Task or Data Item	Section(s)	Menu Path [Keystroke]	
Height or area measurement method	4.2	Application \rightarrow Component Data [F6]	
High alarm	4.8	Application \rightarrow Limit Alarms \rightarrow User	
(Analyzer) I.D.	4.1	Application \rightarrow System	
Inhibit on-off times	4.3.4	Application \rightarrow Timed Events [F5]	
Input(s) being used	3.5 3.3	Hardware \rightarrow Analog Inputs Hardware \rightarrow Discrete Inputs	
Integration on-off times	4.3.4	Application \rightarrow Timed Events [F5]	
Low alarm	4.8	Application \rightarrow Limit Alarms \rightarrow User	
Mole percent (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control	
Normalization (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control	
Outputs being used	4.8 3.6 3.4	Application \rightarrow Limit Alarms \rightarrow User Hardware \rightarrow Analog Outputs Hardware \rightarrow Discrete Outputs	
Peak width, on time	4.3.4	Application \rightarrow Timed Events [F5]	
Ratio (on/off)	4.6	Application \rightarrow Calculations \rightarrow User Defined	
Ratio denominator	4.6	Application \rightarrow Calculations \rightarrow User Defined	
Ratio, stream number(s)	4.6	Application \rightarrow Calculations \rightarrow User Defined	
Relative density (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control	
Response factor	4.2	Application \rightarrow Component Data [F6]	
Response factor, percent deviation	4.2	Application \rightarrow Component Data [F6]	
Retention time, percent deviation	4.2	Application \rightarrow Component Data [F6]	
Spectrum gain	4.3.3	Application \rightarrow Timed Events [F5]	

Table 1-4. MON 20/20 Task List

Task or Data Item	Section(s)	Menu Path [Keystroke]
Stream number(s) (for output)	4.8 3.6 3.4	Application \rightarrow Limit Alarms \rightarrow User Hardware \rightarrow Analog Outputs Hardware \rightarrow Discrete Outputs
Stream sequences skipped, number	$\begin{array}{c} 4.1\\ 4.10\end{array}$	Application \rightarrow System Application \rightarrow Streams
Streams analyzed, number	4.1 4.10	Application \rightarrow System Application \rightarrow Streams
Streams analyzed, sequence	4.1 4.10	Application \rightarrow System Application \rightarrow Streams
Valve on/off times	4.3.1	Application \rightarrow Timed Events [F5]
Weight percent (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control
Wobbe value (on/off)	4.5.1	Application \rightarrow Calculations \rightarrow Control
Zero value (for input)	3.5	Hardware \rightarrow Analog Inputs

Table 1-4. MON 20/20 Task List

1.5 Configuring a gas chromatograph


Use the File menu to edit, save, and restore configuration files.

1.5.1 Editing a configuration file

To edit a configuration file, do the following:

- 1. Disconnect from the GC.
- 2. Select **Open Configuration File...** from the **File** menu. The *Open* dialog displays. Configuration files are saved with the **.xcfg** extension.
- 3. Locate and select the configuration file that you want to edit and click **Open**. MON 20/20 opens the file in offline edit mode.

Figure 1-21. MON 20/20 in offline edit mode

- 4. Use the **Application** and **Hardware** menu commands to edit the GC's settings. For more information on these commands, see Section 3 and Section 4.
- 5. When finished configuring the GC, click --- to disconnect from the GC and to save the changes to the configuration file and to leave offline edit mode.

1.5.2 Saving a gas chromatograph's current configuration

Configuration files are saved with the .xcfg extension. To save a GC's current configuration to a PC, do the following:

- 1. Select **Save Configuration (to PC)**... from the **File** menu. The *Save as* dialog displays.
- 2. Give the file a descriptive name or use the pre-generated file name and navigate to the folder to which you want to save the file.
- 3. Click Save.

1.5.3 Importing a configuration file

To import a new configuration into a GC or to restore a GC's previous configuration, do the following:

Note

The current configuration will be overwritten, so be sure to save it before importing a new or previous configuration.

Note

The GC should be in Idle mode while performing this task.

- 1. Select **Restore Configuration (to GC)...** from the **File** menu. The *Open* dialog displays. Configuration files are saved with the .**xcfg** extension.
- 2. Locate and select the configuration file that you want to import and click **Open**. The file's data is loaded into the GC.

1.6 Restoring the GC to its factory settings

The GC's default timed event, component data and validation data tables are created at the factory and are not accessable by users. To restore these tables to their default values, do the following:

Note
The GC should be in Idle mode while performing this task.

1. With the GC idle, select **Restore to Factory Settings...** from the **File** menu. The following warning message displays:

Figure 1-22. Restore to Factory Settings warning message

2. Click **Yes**. The MON 20/20 restores the default values to the GC's data tables. When the process is completed, the following message displays:

Figure 1-23. Restoration completed message

3. Click OK.

1.7 Configuring your printer

Select **Print Setup...** from the **File** menu to configure the settings for the printer connected to your PC. These settings will apply to any print job queued from MON 20/20, such as the reports that are configured by the Printer Control. See "Printing reports automatically" on page 5-44 for information.

Printer —			
Name:		_	Properties
Status:	Ready		
Туре:			
Where:			
Comment:			
Paper		Orientatio	n
Size:	Letter (8.5" x 11")	1 .	Portrait
_		A	
Source:	Auto Tray Select		C Landscape

Figure 1-24. The Print Setup dialog

The settings available depend on the printer model. Refer to the printer manufacture's user manual for more information.

Note

Your new configuration will be cleared, i.e., the settings will return to the default values, when you exit MON 20/20.

1.8 Using online help

Currently, the online help feature contains all user information and instructions for each MON 20/20 function as well as the MON 20/20 system.

To access the online help, do one of the following:

- Press F1 to view help topics related to the currently active dialog or function.
- Select **Help Topics** from the **Help** menu to view the help contents dialog.

1.9 Operating modes for MON 20/20

The GC supports two different operating modes. Each mode allows the GC to analyze data from a given number of detectors, streams, and methods, as detailed in Table 1-5.

Mode ID Number	Detectors Supported	Streams Supported	Methods Supported
0	1	1	1
1	2	1	1

Table 1-5. Operating Modes for MON 20/20

1.10 Viewing the Physical Name column

Most MON 20/20 hardware windows contain a hidden column called *Physical Name* that lists the default name for the associated GC device, such as the analog inputs or electronic pressure controls. It might be useful to know a device's physical name while troubleshooting.

To view hidden columns, do the following:

1. Select **Program Settings...** from the **File** menu. The *Program Settings* window displays.

Figure 1-25.	The Program	Settings	window
--------------	-------------	----------	--------

Program Set	tings	×
User n <u>a</u> me:	Emerson Process Management	
Company <u>n</u> ame:	Emerson Process Management	
<u>D</u> ata folder:	C:\GCXP Data	Browse
Editing replace Prompt to go Automatically Edit telephor Use FTP pag Allow FTP-or Show Physice	eadsheet to next control ces existing text in tables nfirm save changes y run Connect dialog when MON 20/20 opens ne number before connecting sive mode nly connection	
GC connection t	ime <u>o</u> ut: 13 s <u>R</u> eset OK	Cancel

2. Select the Show Physical Names checkbox.

3. Click **OK**. The *Physical Name* column now will be visible on all windows that have the column, such as the *Heater* window shown in the example below.

	Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PWM Output	Ignore Warm Start	Temperature	Current PW/M	Status
		DEGC				PCT		DEGC	PCT	
Heater 1	Not Used							0		Ok
Heater 2	Not Used							0		Ok
Heater 3	Not Used							0		Ok
Heater 4	Not Used							0	0	Ok
								Save	ОК	Cancel

Figure 1-26. The Heater window showing Physical Name column

1.11 Selecting the GC's networking protocol

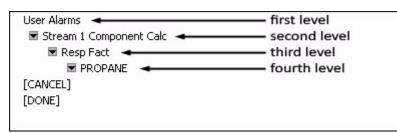
MON 20/20 can connect to the GC using one of two networking protocols: PPP or SLIP. If the version level of the GC's firmware is 1.2 or lower, MON 20/20 should be configured to use the SLIP protocol; otherwise, the PPP protocol should be used.

To select the GC's networking protocol, do the following:

1. Select **Program Settings...** from the **File** menu. The *Program Settings* window displays.

😐 Program Set	tings	×
User n <u>a</u> me:	Emerson Process Management	
Company <u>n</u> ame:	Emerson Process Management	
<u>D</u> ata folder:	C:\GCXP Data	Browse
Editing repla Frompt to get Automatical Edit telepho Use FTP pa Allow FTP-o Show Physic	eadsheet to next control ces existing text in tables infirm save changes y run Connect dialog when MON 20/20 opens he number before connecting ssive mode hly connection sal Names itocol for serial connection (use SLIP if unchecked)	Cancel

Figure 1-27. The Program Settings window


- 2. To use the PPP protocol, make sure the Use PPP protocol for serial connection (use SLIP if unchecked) checkbox is selected; to use the SLIP protocol, make sure the Use PPP protocol for serial connection (use SLIP if unchecked) checkbox is not selected.
- 3. Click OK.

OCTOBER 2010

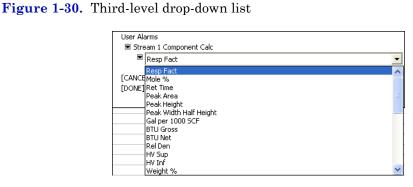
1.12 Using the context-sensitive variable selector

The MON 20/20 method for selecting variables for calculations and other purposes is based on a simple, self-contained system.

Figure 1-28. Example of a context-sensitive variable se

The context-sensitive variable selector consists of a first-level element, called the *context*, that is followed by a series of tiered, drop-down lists. The options available from the drop-down lists depend upon the context element.

The following example explains how to use the context-sensitive variable selector to select a user alarm variable:


1. Click on the **second-level** drop-down list. The full list of available streams displays.

Stream 1 Component Calc	
Stream 1 Component Calc	
Stream 2 Component Calc	
[CA Stream 3 Component Calc	
IDd Stream 4 Component Calc	
Stream 5 Component Calc	
Stream 6 Component Calc	
Stream 7 Component Calc	
Stream 8 Component Calc	
Stream 1 Calc	
Stream 2 Calc	
Stream 3 Calc	
Stream 4 Calc	
Stream 5 Calc	

2. Select the stream you want to use for the alarm.

Figure 1-29. Second-level drop-down list

3. Click the **third-level** drop-down list. The full list of available user alarm variables displays.

- 4. Select the variable you want to use for the alarm. If there are components associated with the variable, the **fourth-level** drop-down list will display.
- 5. If displayed, click the **fourth-level** drop-down list. The full list of available components displays.

Figure 1-31. Fourth-level drop-down list

User Alarn	IS	
💌 Strean	1 Component Calc	
🗷 Re	sp Fact	
	PROPANE	
[CANCEL]	PROPANE	
[DONE]	i-BUTANE	
	n-BUTANE	
	NEOPENTANE	
	I-PENTANE	
	n-PENTANE	
	NITROGEN	
	METHANE	
	CARBON DIOXIDE	
	ETHANE	
	n-NONANE	
	n-HEXANE	
	n-HEPTANE	

- 6. Select the component you want to use for the alarm.
- 7. Click **[Done]**. The context-sensitive variable selector closes and the variable displays in the *Variable* field.

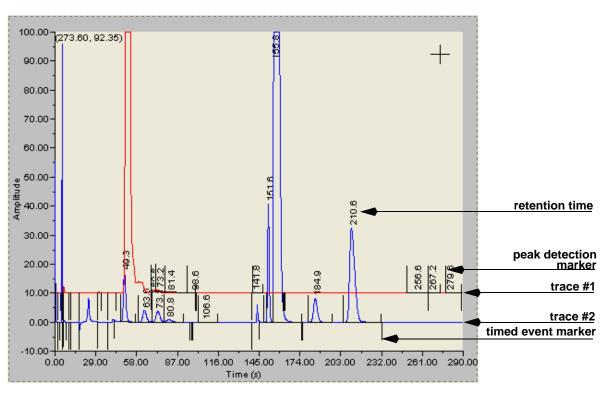
	Variable	Туре	Low Limit	High Limit	DO # to Set	Inhibit Avg	User Alarm Text	Inhibit Alarm Text	
	2 - Stream 2 Component.Resp Fact.C6+ 47/35/17 🛛 💉 🛛				Unused				
		Dff			Unused				
		Dff			Unused				
	0	Dff			Unused				
	0	Dff			Unused				
1	0	Dff			Unused				
	0	Dff			Unused				
	0	Dff			Unused				
	0	Dff			Unused				
)	0	Dff			Unused				
	0	Dff			Unused				
	0	Dff			Unused				
3	0	Dff			Unused				
	0	Dff			Unused				
;	0	Dff			Unused				
;	(Dff			Unused				
		Dff			Unused			T T	
3		Dff			Unused				
1		Dff			Unused				
)		Dff			Unused				
		Dff			Unused				
		Dff			Unused				
3		Dff			Unused				
		Off			Unused				
;		Dff			Unused				
;		Dff			Unused				
		Dff			Unused				
	18				- Chavea			1. E 1.	

Figure 1-32. Variable selected

Section 2: Using the chromatograph functions

⊆hromatograph	Hard <u>w</u> are	Applicatio
<u>C</u> onnect Disconnect		
Chromatogran	n <u>V</u> iewer	F7/F8
View/Set Date	<u>T</u> ime	

For viewing and managing chromatograms, MON 20/20 is flexible and straighforward. This chapter shows you how to connect to and disconnect from a gas chromatograph. This chapter also shows you how to access the Chromatogram Viewer, as well as to use it to view, print and manipulate various types of chromatograms.


Finally, this chapter explains how to set a gas chromatograph's date and time.

2.1 Viewing chromatograms

Use the Chromatogram Viewer to display and print live, archived, or saved chromatograms. There is no limit to the number of archived and saved chromatograms that can be displayed at once; however, to maximize performance, <u>the number of chromatograms displayed should</u> <u>be limited to 25 or less</u>. The Chromatogram Viewer can display all three types of chromatograms together, alone, or in any combination.

The Chromatogram Viewer contains a host of information about both current and past GC analyses, and it contains just as many ways of editing and manipulating that data.

2.1.1 Data displayed in the chromatogram window

Figure 2-1. The chromatogram window

The following elements are displayed in the chromatogram window:

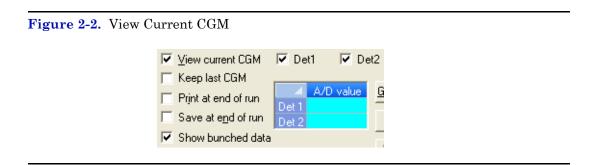
- <u>The chromatogram</u>. A *trace* is the graphical representation of the analysis results from a single detector; a *chromatogram* is the collection of all traces and associated data that are generated by a gas chromatograph's detector or detectors. Each trace displays in a different color.
- <u>Retention times</u>. The retention time for each peak displays above it.
- <u>Baselines</u>. The baseline projects from the beginning to the end of a peak. The baseline can be turn on or off by clicking **Baselines**.

- <u>Timed event markers</u>. These markers, which correspond to events from the Timed Events table, display on the chromatogram as black marks descending from the trace-line. There are three types of timed event markers:
 - Valve events display as long descending marks.
 - Integration events display as medium descending marks.
 - Spectrum gain events display as short descending marks.
- <u>Peak detection markers</u>. These markers display on the chromatogram as black marks ascending from the trace-line. Each peak has two peak detection markers: one at its beginning and one at its end.

2.1.2 Viewing a live chromatogram

To view a live chromatogram, do the following:

- 1. Connect to the GC.
- 2. Select Chromatogram Viewer... from the Chromatograph menu.

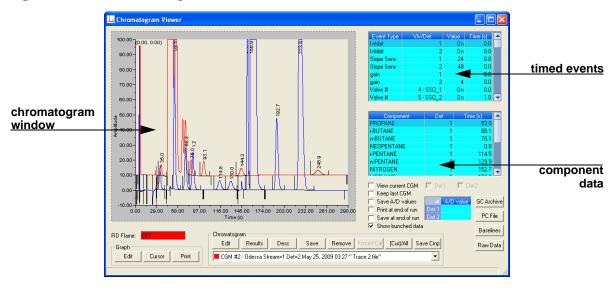

Note

Another way to display the Chromatogram Viewer is to click , which is located on the Toolbar.

WARNING

To prevent the loss of any new data, be sure to save the chromatogram before closing the Chromatogram Viewer. For more information, see "Saving a chromatogram trace" on page 2-25.

3. From the Chromatogram Viewer window, check View current CGM.


The chromatogram displays in the chromatogram window. If the chromatogram contains one trace, the *Det1* checkbox is automatically checked; if the chromatogram contains two traces, the *Det1* and *Det2* checkboxes are automatically checked. To remove a trace, uncheck its detector checkbox.

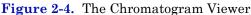

Each trace that displays is color-coded; use the Chromatogram pulldown menu to select a specific trace.

Figure 2-3. Chromatogram pull-down menu

- CI	hromatogram Edit Results Desc Save Remove Forced Cal	[Cur]/All Save Cmp
	CGM #1 - Houston Stream=1 Det=1 Sep 07, 2008 09:54 " Trace 1 file"	
	CGM #1 - Houston Stream=1 Det=1 Sep 07, 2008 09:54 " Trace 1 file" CGM #2 - Houston Stream=1 Det=2 Sep 07, 2008 09:54 " Trace 2 file"	
	CGM #3 - Houston Stream=1 Det=1 Sep 07, 2008 19:30 " Trace 1 file" CGM #4 - Houston Stream=1 Det=2 Sep 07, 2008 19:30 " Trace 2 file"	R

The list of GC events associated with the production of the chromatogram, along with each event's status and time, displays in the *Timed Events* table to the right of the chromatogram display window. The *Component Data* table, to the lower right of the chromatogram display window, lists the components measured during the analysis. These tables are updated in real-time, just as the chromatogram is.

Note

By default, the timed events and component data tables are configured to scroll to and highlight the next occurring event in the analysis cycle. To disable this feature, right-click on one of the tables and uncheck the Auto Scroll option on the pop-up menu.

2.1.3 Viewing an archived chromatogram

Archived chromatograms are stored on the GC, so you must be logged in to access them. With MON 20/20 archived chromatograms as old as four days are available for viewing.

Archived chromatograms are sorted and displayed on four tabbed panes:

• **Chromatograms** - This view displays all chromatogram types sorted by time so that the newest file is always listed first. This view can be further configured to display only the files from the last five runs for each stream, or to display all the files that are stored on the GC. • **Protected chromatograms** - Protected chromatograms are never deleted from the GC. To protect a chromatogram, see "Protecting or unprotecting an archived chromatogram" on page 2-9.

Note

Protected chromatogram files have a "lock" icon (\bigcirc) displayed beside them.

• Final Calibration chromatograms - MON 20/20 will store up to one year's worth—or approximately 370—of final calibration chromatograms; once the limit is reached, MON 20/20 will delete the oldest non-protected final calibration chromatogram for each new final calibration chromatogram that is created. If multiple final calibration chromatograms are created on the same day, the last chromatogram created is archived, unless MON 20/20 has been configured to archive all final calibration chromatograms.

Note

See "Managing the system" on page 4-2 to learn how to configure MON 20/20's archiving behavior.

Final Validation chromatograms - These chromatograms are treated in the same manner as final calibration chromatogram files. To view one or more archived chromatograms, do the following:

1. Click **GC** Archive. The *Select archive file(s)* window appears.

	omatograms	Protected Chromatograms	Final Calibration Final V		[
	Stream #	Stream Name	Anly Type	Date	Time	
~	3	Stream 3	Val	Sep 22,2010	08:17:12	
f	2	Cal Bottle	FCal	Sep 22,2010	08:12:52	
	2	Cal Bottle	Cal	Sep 22,2010	08:08:32	
	2	Cal Bottle	Cal	Sep 22,2010	08:04:12	_
	16	Stream 16	Anly	Sep 22,2010	07:59:52	
	15	Stream 15	Anly	Sep 22,2010	07:55:32	
	14	Stream 14	Anly	Sep 22,2010	07:51:12	
	13	Stream 13	Anly	Sep 22,2010	07:46:52	
	12	Stream 12	Anly	Sep 22,2010	07:42:32	
	11	Stream 11	Anly	Sep 22,2010	07:38:12	
	10	Stream 10	Anly	Sep 22,2010	07:33:52	
	9	Stream 9	Anly	Sep 22,2010	07:29:32	
	3	Stream 3	FVal	Sep 22,2010	07:25:12	
	3	Stream 3	Val	Sep 22,2010	07:20:52	
	3	Stream 3	Val	Sep 22,2010	07:16:32	
	2	Cal Bottle	Cal	Sep 22,2010	07:07:52	
	8	Stream 8	Anly	Sep 22,2010	06:59:12	
	7	Stream 7	Anly	Sep 22,2010	06:54:52	
	6	Stream 6	Anly	Sep 22,2010	06:50:32	
	5	Stream 5	Anly	Sep 22,2010	06:46:12	
<				0.00000	00.44.50	>
	1.20.1.0.1.1					
ise s	shirt/ctrl key f	or multiple file selection.			All	

Figure 2-5. The Select archive file(s) window

The files can be sorted by date, file name, analysis type, time, or stream number by clicking the appropriate column header. By default, they are sorted by date, with the newest file listed first.

Note

By default, only recent chromatograms—that is, the last five runs for each stream—are displayed. To view all archived chromatograms, click **All**. To return to viewing only recent chromatograms, click **Recent**.

2. Select one or more archive files by clicking them. Use the SHIFT or CTRL key to make multiple selections.

To save the selected files to the PC, select the *Download and save selected chromatograms* check box and click **Download & Save**.

3. Click **Download & Show**. The *Select* window displays for each chromatogram that contains data from more than one detector.

Figure 2-6. The Select window

4. For each chromatogram, double-click either "Detector 1", "Detector 2", or "Both" from the *Select* window.

MON 20/20 plots the archived chromatogram(s) and the corresponding data displays in the timed event and component data tables.

Note

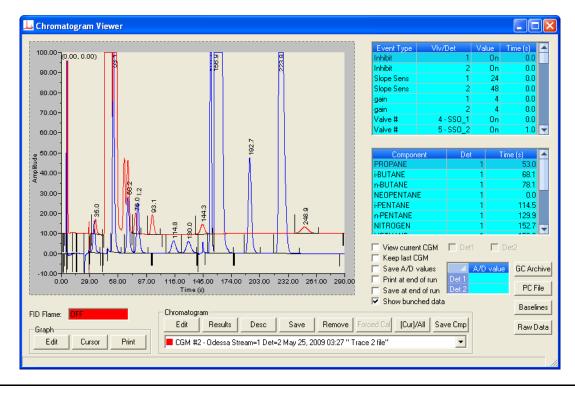


Figure 2-7. The Chromatogram Viewer displaying an archived chromatogram

2.1.4 Protecting or unprotecting an archived chromatogram

By default, archived chromatograms are not saved indefinitely. Once the GC's storage capacity for archived chromatograms has been reached, the oldest archived chromatograms are deleted to make room for the newest archived chromatograms.

If you have a chromatogram that you would like to preserve, it is possible to do so by protecting it. Protected chromatograms will not be deleted to accomodate newer chromatograms. To delete a protected chromatograms, it must first be unprotected. MON 20/20 will save up to 100 protected chromatograms.

Note

Protected chromatograms have a "lock" icon (\bigcirc) displayed beside them.

Note

To protect an archived chromatogram you must be logged in as a supervisor or admin.

To protect a chromatogram, do the following:

1. Click **GC** Archive. The *Select Archive File(s)* window appears.

Figure 2-8. The Select archive file(s) window

Chromatograms	Protected Chromatograms Fina	I Calibration Final Valid	ation		
Stream #	Stream Name	Anly Type	Date	Time	^
3	Stream 3	Val	Sep 22,2010	08:17:12	
2	Cal Bottle	FCal	Sep 22,2010	08:12:52	
2	Cal Bottle	Cal	Sep 22,2010	08:08:32	
2	Cal Bottle	Cal	Sep 22,2010	08:04:12	
16	Stream 16	Anly	Sep 22,2010	07:59:52	
15	Stream 15	Anly	Sep 22,2010	07:55:32	
14	Stream 14	Anly	Sep 22,2010	07:51:12	
13	Stream 13	Anly	Sep 22,2010	07:46:52	
12	Stream 12	Anly	Sep 22,2010	07:42:32	
11	Stream 11	Anly	Sep 22,2010	07:38:12	
10	Stream 10	Anly	Sep 22,2010	07:33:52	
9	Stream 9	Anly	Sep 22,2010	07:29:32	
3	Stream 3	FVal	Sep 22,2010	07:25:12	
3	Stream 3	Val	Sep 22,2010	07:20:52	
3	Stream 3	Val	Sep 22,2010	07:16:32	
2	Cal Bottle	Cal	Sep 22,2010	07:07:52	
8	Stream 8	Anly	Sep 22,2010	06:59:12	
7	Stream 7	Anly	Sep 22,2010	06:54:52	
6	Stream 6	Anly	Sep 22,2010	06:50:32	
5	Stream 5	Anly	Sep 22,2010	06:46:12	~
	· · ·		0 00 0040	00.44.50	>
se shift/ctrl key f	or multiple file selection.			AI	_
Download and	d save selected chromatograms	Prot	ect Download &	Show Can	

The chromatograms can be sorted by date, file name, analysis type, time, or stream number by clicking the appropriate column header.

By default, they are sorted by date, with the newest chromatogram listed first.

Note

By default, only recent chromatograms—that is, the last five runs for each stream—are displayed. To view all archived chromatograms, click **All**. To return to viewing only recent chromatograms, click **Recent**.

- 2. Make sure the *Chromatogram* tab is selected and then select the appropriate archived chromatogram by clicking it. Use the SHIFT or CTRL key to make multiple selections.
- 3. Click **Protect**. The *Edit Description* window displays.

Figure 2-9. The Edit Description window

Edit Description	×
1	
	<u>OK</u> <u>C</u> ancel

4. Enter any information that you would like to have associated with the chromatogram and then click **OK**. If you do not want to enter any information, click **Cancel**.

MON 20/20 will place a "lock" icon (\bigcirc) beside the selected chromatogram to verify its protected status. You can also click on the *Protected Chromatograms* tab to view your newly protected archived chromatogram.

To unprotect a protected file, do the following:

1. Click **GC** Archive. The *Select archive file(s)* window appears.

Figure 2-10. The Select archive file(s) window

Stream #	Stream Name	Anly Type	Date	Time	~
3	Stream 3	Val	Sep 22,2010	08:17:12	
2	Cal Bottle	FCal	Sep 22,2010	08:12:52	
2	Cal Bottle	Cal	Sep 22,2010	08:08:32	=
2	Cal Bottle	Cal	Sep 22,2010	08:04:12	
16	Stream 16	Anly	Sep 22,2010	07:59:52	
15	Stream 15	Anly	Sep 22,2010	07:55:32	
14	Stream 14	Anly	Sep 22,2010	07:51:12	
13	Stream 13	Anly	Sep 22,2010	07:46:52	
12	Stream 12	Anly	Sep 22,2010	07:42:32	
11	Stream 11	Anly	Sep 22,2010	07:38:12	
10	Stream 10	Anly	Sep 22,2010	07:33:52	
9	Stream 9	Anly	Sep 22,2010	07:29:32	
3	Stream 3	FVal	Sep 22,2010	07:25:12	
3	Stream 3	Val	Sep 22,2010	07:20:52	
3	Stream 3	Val	Sep 22,2010	07:16:32	
2	Cal Bottle	Cal	Sep 22,2010	07:07:52	
8	Stream 8	Anly	Sep 22,2010	06:59:12	
7	Stream 7	Anly	Sep 22,2010	06:54:52	
6	Stream 6	Anly	Sep 22,2010	06:50:32	
5	Stream 5	Anly	Sep 22,2010	06:46:12	~
			0.00040	00.44.50	>
	multiple file selection.				_
e shino cut key tor i	multiple nie selection.			All	
Download and sa	Download and save selected chromatograms Unprotect Download & Show Cancel				

- 2. Locate and select the protected chromatogram that you want to unprotect. Use the SHIFT or CTRL key to make multiple selections.
- 3. Click **Unprotect**. MON 20/20 will remove the "lock" icon () from beside the selected chromatogram. The chromatogram's description information, if any, will also be deleted. This chromatogram is now eligible to be deleted to make room for newer archived chromatograms.

2.1.5 Viewing a saved chromatogram

To view a chromatogram that was saved to disk, do the following:

- 1. Click **PC File**. The *Open* dialog appears.
- 2. Navigate to the desired .xcgm file or .xcmp comparison file and select it. To make multiple selections, use the SHIFT or CTRL key.
- 3. Click **OK**. The *Select* window displays for each chromatogram that contains data for more than one detector.

Figure 2-11. The Select window

4. For each chromatogram, double-click either "Detector 1", "Detector 2", or "Both" from the *Select* window.

MON 20/20 plots the archived chromatogram(s) and the corresponding data displays in the timed event and component data tables.

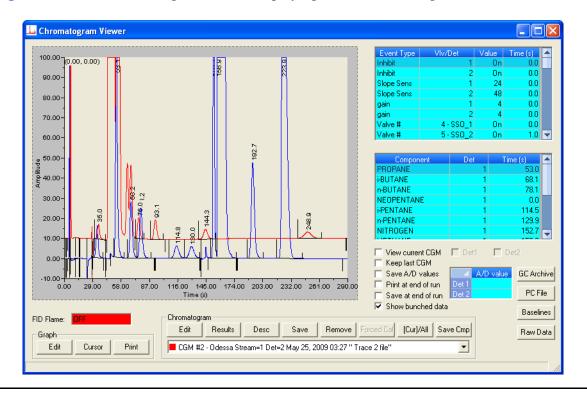


Figure 2-12. The Chromatogram Viewer displaying a saved chromatogram

2.2 Working with the graph

Right-clicking with the mouse on the graph brings up the following commands and keyboard shortcuts:

Command Name	Shortcut	Description
Zoom In	" + " (NUMPAD)	Zooms in on the entire graph.
		NOTE : Another way to zoom in is by clicking and dragging your mouse to select the region of the graph that you want to zoom in on.
Zoom Out	"-" (NUMPAD)	Zooms out from the entire graph.
Zoom X In	"6" (NUMPAD)	Zooms in on the X axis.
Zoom X Out	"4" (NUMPAD)	Zooms out from the X axis.
Zoom Y In	"8" (NUMPAD)	Zooms in on the Y axis.
Zoom Y Out	"2" (NUMPAD)	Zooms out from the Y axis.
Save State	CTRL + HOME	Saves current or archived display settings for the selected chromatogram.
		NOTE : The Save State function is available only when viewing a live or archived chromatogram.
Restore State	HOME	Restores the last saved display settings for the selected chromatogram.
		NOTE : Pressing HOME returns the user to the saved state.
Toggle Full Screen	F11	Toggles the display of the Chromatogram Viewer's tables and buttons and maximizes the chromatogram window.
Cursor to Nearest Point	F8	Snaps the cursor to the nearest point on the chromatograph in both the X and Y directions.
Toggle Coarse/ Fine Cursor	F4	Toggles the cursor from coarse and less accurate to fine and more accurate.
Toggle Lines/Dots Displays	F9	Toggles the chromatographs from lines to dots, or dots to lines.

Command Name	Shortcut	Description
Toggle Mouse Position Tip	CTRL + F4	The graph's cursor follows the movement of the mouse while a hovering tooltip displays the exact coordinates of the current point.
Toggle Nearest Position Tip	CTRL + F9	The graph's cursor follows the movement of the mouse cursor.
Print	CTRL + P	Prints the chromatogram.
Copy to clipboard	CTRL + C	Copies from the graph the raw detector data that was used to plot the selected chromatogram. This data can be pasted into another application such as Microsoft Word or Microsoft Excel.
Paste from clipboard	CTRL + V	Plots a range of points copied from another application such as Microsoft Word or Microsoft Excel.

2.3 Editing the display properties of the chromatograph

MON 20/20 allows you to change the appearance of many of the chromatogram's elements, such as its x-axis and y-axis values, the color of the chromatograph's background, and the display status of its labels.

2.3.1 The Graph bar

Use the Graph bar buttons to change the display parameters of the chromatogram.

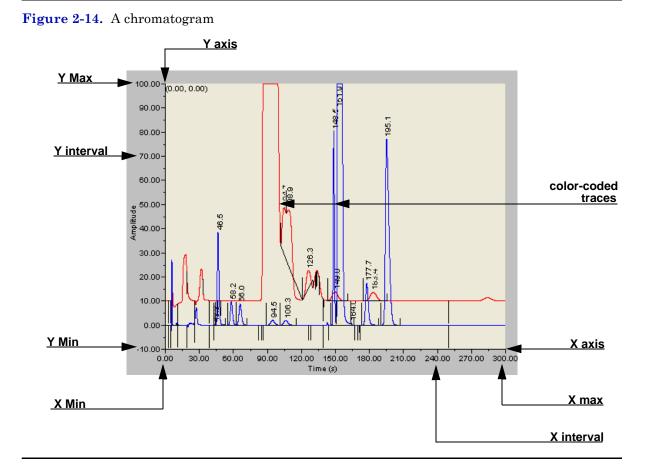

Click Edit from the Graph bar. The Edit Scales window displays.

Figure 2-13. The Edit Scales window

Edit Scales		
X Min: X Max: Y Min: Y Max: Print Speed: X Intervals:	0 300 -10 100 0 10	Display Option C Lines Dots Show labels Scroll newest X
Y Intervals: App	11 y	OK Cancel

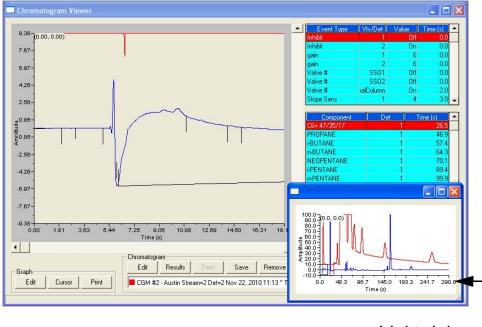
Command	Description	Default Value
X Min	Sets the minimum value, in seconds, for the X axis.	0
X Max	Sets the maximum value, in seconds, for the X axis. The is value is determined by the Timed Events table.	100
Y Min	Sets the minimum value for the Y axis.	-10
Y Max	Sets the maximum value for the Y axis.	100
Print Speed	Sets the number of inches per second for the x-axis while printing a chromatogram, similar to an XY plotter.	0
X Intervals	Sets the number of intervals to be displayed on the graph for the X axis.	10
Y Intervals	Sets the number of intervals to be displayed on the graph for the Y axis.	11
Display Option	Determines whether the chromatograph is displayed as a solid line or as a dotted line. Lines is checked by default.	Lines
Show labels	Toggles the display of the graph labels.	Checked
Scroll newest X	Determines whether the graph's window moves to focus on the most recent data point along the x axis. <u>This feature</u> <u>only applies to live chromatograms</u> .	Unchecked

The following table lists the parameters that can be edited:

To see how your changes affect the graph, click **Apply**. To accept your changes, click **OK**.

- Click **Cursor** to toggle the cursor size from coarse movement (less accurate) to fine movement (more accurate).
- Click **Print** to print the chromatogram window.

2.3.2 Additional plot commands



In addition to the Graph bar, there are a few other commands available that allow you to manipulate the look and feel of the graph. To access the additional plot commands

menu, right-click on the Chromatogram Viewer anywhere except on the graph or the timed event and component data tables. The additional commands are:

Command	Description
Set Plot Area Color	Changes the color of the graph's background. This may be necessary to make the chromatograms more visible. The default RGB color values are 236, 233, and 216.
Auto Resize Series	Scales down the X-axis and the Y-axis to fit the entire chromatogram onto the window.

Command	Description
Show Mini Plot	Toggles the display of a smaller version of the chromatogram in a separate, resizable window. This allows you to keep an overview of the entire graph at all times, especially when zoomed in.
	This window automatically displays whenever you zoom in on the original chromatogram.

min	i-p	lot	win	dow

Rearrange Series	Resizes and offsets two or more traces so that they can both be fully displayed on the graph. To offset a trace means to raise its Y-axis relative to the Y-axis of the previous trace so that one trace is not drawn over the other but instead one trace is drawn above the other.
Trace Offset Settings	Indicates the amount of offset between two or more traces. To offset a trace means to raise its Y-axis relative to the Y-axis of the previous trace so that one trace is not drawn over the other but instead one trace is drawn above the other.
	If two detectors are in use, each set of traces can be offset independentlythat is, the traces for one detector can be offset relative to each other, but independent of the traces from the second detector.

2.4 Working with a chromatogram

Figure 2-15. The Chromatogram bar

Edit	Results	Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
CGM #2 - Houston Stream=1 Det=2 Sep 07, 2008 09:54 " Trace 2 file"							

The Chromatogram bar contains a row of buttons that allows you to manipulate a single chromatogram. Below the row of buttons is the chromatogram pull-down menu, which contains a list of all of the currently displayed chromatograms/traces. Before you can work with a chromatogram you must first select it from the pull-down menu.

2.4.1 Editing a chromatogram trace

You can use the Edit function to change the X and Y offset values for a trace, as well as its color. These changes may be necessary to make the trace more distinguishable from those that surround it, or to align a trace with a different trace for comparison.

To edit a trace, do the following:

1. Select the trace that you want to edit from the Chromatogram pulldown menu.

Chromatogra Edit	am Results	Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
CGM #1	- Houston St	ream=1 Det=	1 Sep 07, 2	008 09:54 ''	Trace 1 file"		
1	- Houston St						
	2 - Houston St 3 - Houston St						
	- Houston St						n

Figure 2-16. Chromatogram pull-down menu

2. Click Edit. The *Edit Chromatogram* dialog appears.

Figure 2-17. The Edit Chromatogram dialog

Trace 1	file9_16_2008_17_53_1 🔀
X Offset:	
Y Offset:	20
# points:	15000
Color:	YellowGreen 💌
Appl	y OK Cancel

Command	Description
X Offset	Enter a positive number to move the trace to the right, or a negative number to move the trace to the left.
Y Offset	Enter a positive number to move the trace up, or a negative number to move the trace down.
# points	Number of data points in the trace. This field is read-only.
Color	Assigns a color to the trace.

3. To see how your changes affect the trace, click **Apply**. To accept your changes, click **OK**.

2.4.2 Viewing chromatogram results

To display a table of calculation results for a trace, do the following:

1. From the Chromatogram pull-down menu, select the appropriate trace.

Figure 2-18. Chromatogram pull-down menu

Chromatogr	am						
Edit	Results	Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
🗖 CGM #1	- Houston S	tream=1 Det=	1 Sep 07, 2	008 09:54 '	'Trace 1 file''		-
🗖 CGM #1	I - Houston S	tream=1 Det=	1 Sep 07, 2	2008 09:54 '	'Trace 1 file''		
		tream=1 Det=					
					"Trace 1 file"		
📕 CGM #4	4 - Houston S	tream=1 Det=	2 Sep 07, 2	2008 19:30 '	' Trace 2 file''		v

2. Click **Results**. A window appears displaying the calculation results for the selected trace.

A	В	С	D	E	F	- MG	Н
Houston stream 1 on Sun Sep 7 09:54:18 2008							
Component	Mole	Weight	Liquid	Gallons/	BTU	BTU	Relative
Name	Percent	Percent	Volume	1000scf	Gross	Net	Density
PROPANE	1.22653	1.9076	2.6679	0.3377	30.93	28.46	0.0187
i-BUTANE	0.36750	0.7534	0.9496	0.1202	11.98	11.05	0.0074
n-BUTANE	0.37220	0.7630	0.9270	0.1173	12.17	11.23	0.0075
NEOPENTANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
i-PENTANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
n-PENTANE	0.12892	0.3281	0.3689	0.0467	5.18	4.79	0.0032
NITROGEN	86.68713	85.6501	75.3233	0.0000	0.00	0.00	0.8385
METHANE	3.84832	2.1774	5.1526	0.0000	38.96	35.06	0.0213
CARBON DIOXIDE	1.22992	1.9092	1.6480	0.0000	0.00	0.00	0.0187
ETHANE	6.13948	6.5112	12.9627	1.6408	108.90	99.63	0.0637
n-HEXANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
n-HEPTANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
n-OCTANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
n-NONANE	0.00000	0.0000	0.0000	0.0000	0.00	0.00	0.0000
TOTALS	100.0000	100.0000	100.0000	2.2628	208.12	190.22	0.9790
Compressibility Factor (1/Z)	1.00077						
@ 14.73 PSIA, 60.0 Degrees F							
Base Pressure	14.73						
	14.75						
Gross Dry BTU	208.28	Corrected/2	2				
Gross SAT BTU	204.66	Corrected/2	2				
Actual Gross BTH	208.28	Corrected	,				
e Clipboard Print Canc	el						

Figure 2-19. The results window

- Click **Save** to save these results in one of the following formats: tab-delimited (.txt), comma-delimited (.csv), Microsoft Excel (.xls), HTM (.htm), or XML (.xml).
- Click **Clipboard** to copy the data to the Windows clipboard, where it can be pasted into another document.
- Click **Print** to print a tab-delimited version of the results.

2.4.3 Saving a chromatogram trace

To save a trace to disk, do the following:

1. From the Chromatogram pull-down menu, select the trace that you want to save.

Figure 2-20. Chromatogram pull-down menu

Chromatogra Edit	am Results	Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
СGM #1	- Houston St	ream=1 Det=	1 Sep 07, 20		Trace 1 file"		-
1	- Houston St - Houston St						
📕 CGM #3	- Houston St - Houston St	ream=1 Det=	1 Sep 07, 2	008 19:30 "	Trace 1 file''	C	à

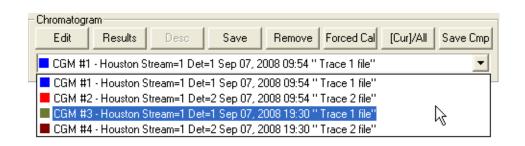
2. Click Save. The Save As window displays.

Save in:	C Phoenix		•	+ 🗈 💣 🎟 -	
My Recent Documents					
Desktop My Documents					
My Computer					
My Network Places	File <u>n</u> ame: Save as <u>t</u> ype:	XA CGM Files (*.xcgm)		•	<u>S</u> ave Cancel

Figure 2-21. The Save As window

3. For convenience the file is given an auto-generated file name that includes the trace's creation date and time; however, you can give the file any name that you choose. Click **Save** and the specified trace will be saved.

2.4.4 Removing a chromatogram trace from view


Figure 2-22. Chromatogram pull-down menu

To remove a live trace from the chromatogram window, do one of the following:

- If you want to remove all live traces, click the *View current CGM* check box to uncheck it.
- If you want to remove a single live trace, click the appropriate detector checkbox beside the *View current CGM* check box.

To remove a saved or an archived trace from the chromatogram window and to close the associated .xcgm file, do the following:

1. From the Chromatogram pull-down menu, select the trace that you want to remove.

2. Click **Remove**.

2.4.5 Forcing a calibration

The Forced Cal command uses an archived chromatogram's raw data to calibrate the GC. The calculation results are stored in the component data table for the corresponding stream number.

A major benefit of a forced calibration is increased efficiency. Using a <u>previously validated</u> calibration gas chromatogram removes the necessity for the GC to perform a calibration and validation run before performing an analysis.

To perform a forced calibration, do the following:

1. From the Chromatogram pull-down menu, select the trace that you want to use to calibrate the GC.

Figure 2-23. Chromatogram pull-down menu

Chromatogra	m						
Edit	Results	Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
<mark>=</mark> СGM #1	- Houston St	ream=1 Det="	1 Sep 07, 2	008 09:54 ''	Trace 1 file''		-
🗖 CGM #1	- Houston St	ream=1 Det=	1 Sep 07, 2	008 09:54 "	Trace 1 file"		
	- Houston St						
📕 CGM #3	- Houston St	ream=1 Det=	1 Sep 07, 2	008 19:30 "	Trace 1 file"		2
📕 CGM #4	- Houston St	ream=1 Det=	2 Sep 07, 2	008 19:30 "	Trace 2 file"		. 0

2. Click Forced Cal.

2.4.6 Controlling the display of data in the Timed Events and Components tables

MON 20/20 can display two levels of information in the Timed Events and component data tables:

- All timed events and all components for all open chromatograms.
- Timed events and components for the currently selected chromatogram.

By default, the two tables show only the timed events and components for the currently selected chromatogram.

Figure 2-24. Timed events and component data tables showing data for a currently selected trace

Event Type	Vlv/Det	Value	e	Time (s)	4
gain			3	0.0	
gain	1		3	0.0	4
Valve #	2 - Valve 2		On	0.0	
Inhibit	1		0n	0.0	
Valve #	3 - Valve 3		0n	2.0	
Slope Sens	1		20	3.0	
Valve #	1 - Valve 1		On	5.0	
Valve #	4 - Valve 4		0n	6.0	•
Component	Det		Ti	me (s)	4
Propane				45.8	
i-Butane		1		61.3	
n-Butane		1		71.7	÷
Neopentane		1		79.0	
		1		109.8	
i-Pentane					
i-Pentane n-Pentane		1		125.6	

To view the data for a different chromatogram, select the trace from the Chromatogram pull-down menu.

Figure 2-25. Chromatogram pull-down menu

Chromatogram —						
Edit Res	ults Desc	Save	Remove	Forced Cal	[Cur]/All	Save Cmp
CGM #1 - Hou	ston Stream=1 Det=	=1 Sep 07, 20	08 09:54 '' Ti	race 1 file''		•
📒 CGM #1 - Hou	ston Stream=1 Det=	=1 Sep 07, 20	08 09:54 '' T	race 1 file"		
📕 CGM #2 - Hou	ston Stream=1 Det=	=2 Sep 07, 20	08 09:54 '' T	race 2 file''		
EGM #3 - Hou	ston Stream=1 Det=	=1 Sep 07, 20	08 19:30 '' T	race 1 file''		à.
📕 CGM #4 - Hou	ston Stream=1 Det=	=2 Sep 07, 20	08 19:30 '' T	race 2 file"		v

To view all timed events and all components for all open chromatograms, click **Cur/All**.

Figure 2-26. Timed events and component data tables showing data for all currently open traces

CGM#	Ev	/ent Type	VIvZ	Det	Value	Time (s)	
1	ga	in		1	3	0.0	
1	ga	in		1	3	0.0	
1	Va	lve #	2 -	Valve 2	On	0.0	
2	Inł	nibit		2	On	0.0	
1	Inł	nibit		1	On	0.0	
2	Slo	pe Sens		2	10	2.0	
1	Va	lve #	3 -	Valve 3	On	2.0	_
1	Slo	pe Sens		1	20	3.0	Y
CGM#		Compo	onent	Det		lime (s)	4
CGM# 1	;	Compo Propane	onent	Det	1	lime (s) 45.8	
			onent	Det			•
		Propane	onent	Det	1	45.8	•
		Propane <mark>i-Butane</mark>		Det	1	45.8 61.3	•
		Propane i-Butane n-Butane		Det	1 1 1	45.8 61.3 71.7	•
		Propane i-Butane n-Butane Neopenta	ne	Det	1 1 1 1	45.8 61.3 71.7 79.0	•

Note

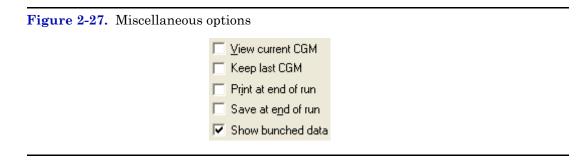
The brackets ([]) on the Cur/All button indicate which mode is being displayed in the tables.

To toggle back to viewing only the timed events and components for the currently selected chromatogram, click **Cur/All** again.

2.4.7 Saving a comparison file

A comparison file allows you to save your current view, including all open chromatograms, for later review and reuse. To save a comparison file, do the following:

- 1. Click Save Cmp. The Save As dialog appears.
- 2. Navigate to the folder in which you want to save the file.
- 3. For convenience the file is given an auto-generated file name that includes the current date and time; however, you can give the file any name that you choose.
- 4. Click Save.


2.4.8 Opening a comparison file

To open a comparison file, do the following:

- 1. Click **PC File**. The *Open* dialog displays.
- 2. Select **XA CMP Files (*.xcmp)** from the *Files of type* drop-down menu.
- 3. Navigate to the folder that contains the comparison file that you want to open and select the file.
- 4. Click **Open**.

2.5 Miscellaneous commands

The series of check boxes to the right of the graph have the following functions:

- **Keep last CGM** When viewing a live chromatogram, upon starting a new run, MON 20/20 keeps the most recently completed chromatogram on the graph for comparative purposes.
- **Print at end of run** Prints the chromatogram to the PC's default printer at the end of the run and is unchecked by default.
- **Save at end of run** Saves the chromatogram to the *Data* folder at the end of the run and is unchecked by default.
- Show bunched data If this box is unchecked, then all of the raw data points are plotted to the chromatogram window; if this box is checked, which is the default option, then each point plotted on the graph represents the average of a group of raw data values. The size of the data group is determined by the peak width value listed in the Timed Events table.

2.5.1 Working with the Timed Events table

Event Type	Vlv/Det	Value	Time (s)	
Inhibit	2	On	0.0	
Inhibit	1	On	0.0	
Peak Width	2	8	0.0	
Slope Sens	2	- 24	0.0	
gain	1	4	0.0	
gain	2	4	0.0	
Valve #	1-SSO_1	On	0.0	
Valve #	5-SSO_2	On	1.0	-

The Chromatogram Viewer displays a compact version of the Timed Events table, located on the upper right side of the window. The events displayed in the table are sorted by time. See "Managing timed events" on page 4-17 for more information.

The Timed Event table displays the following data for each event:

Name	Description
Event Type	The type of timed event. These events are mapped to the Time Events window and include Valve, Integration and Gain events.
Vlv/Det	Identifies which valve or detector is involved in the event.
Value	Setting of the event; for example, a valve was turned ON, or the gain was set to 4.
Time (s)	The number of seconds into the cycle that the event occurred or will occur.

Timed events from live or archived chromatograms can be edited from the Chromatogram Viewer by right-clicking on the Timed Events table. The changes will affect the next analysis run. The following commands are also available by right-clicking on the table:

- **Auto Scroll** When checked, if a live trace has been selected from the Chromatogram pull-down menu, the Timed Event table will keep its focus on the event closest in time by highlighting that event in dark blue.
- **Save Sheet** Allows you to save the table to the PC in one of the following formats: TXT, CSV, XLS, HTM, or XML.
- **Copy to Clipboard** Allows you to copy the table to the clipboard . This data can be pasted into another application such as Microsoft Word or Microsoft Excel.
- **Print Sheet** Allows you to print the table to your default printer.

2.5.2 Editing Timed Events from the Time Events window

To launch the *Timed Events* dialog directly, right-click on the Chromatogram Viewer's Timed Events table and select **Edit Timed Events Table**. The *Timed Events* dialog displays. See "Managing timed events" on page 4-17 for more information.

2.5.3 Editing Timed Events from the Chromatogram Viewer

To edit timed events from the Chromatogram Viewer, do the following:

- 1. From the Chromatogram pull-down menu, select the chromatogram whose timed events you want to edit.
- 2. Depending on the type of event that you want to edit, do the following:
 - To edit valve events, right-click on the Timed Events table and select **Edit Timed Events (Valve Events)**. The Valve Events table from the *Timed Events* dialog displays. See "Editing valve events" on page 4-20 for more information.
 - To edit integration events, right-click on the Timed Events table and select **Edit Timed Events (Integration Events)**. The Integration Events table from the *Timed Events* dialog displays. See "Editing integration events" on page 4-22 for more information.
 - To edit gain events, right-click on the Timed Events table and select **Edit Timed Events (Gain Events)**. The Spectrum Gain Events table from the *Timed Events* dialog displays. See "Editing spectrum gain events" on page 4-26 for more information.
- 3. To remove a selected event from the table, right-click on the event and select **Delete Row**.

Note

This option is only available while in edit mode.

4. To insert an event *above* the currently select event, right-click on the table and select **Insert before**. To insert an event *below* the currently select event, right-click on the table and select **Insert after**. The new row will be added. The options available for configuring the new event depends upon which edit mode you are in—Valve, Integration, or Gain.

Note

These options are only avialable while in edit mode.

5. To save your changes, right-click on the table and select **Save Changes**. The changes will affect the next analysis run. To return to the Timed Events table without saving your changes, select **Discard Changes**.

2.5.4 Using the Chromatogram Viewer's cursor to update a Timed Event

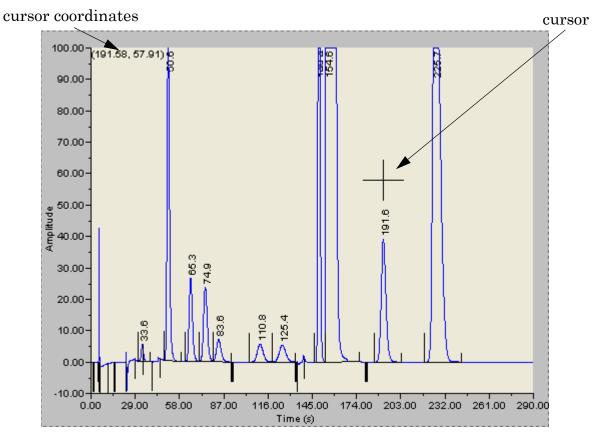


Figure 2-28. Chromatograph cursor

The Chromatogram Viewer has its own cursor that can be displayed by double-clicking within the boundaries of the graph. Once the cursor is displayed, it can be dragged to any point on the graph.

As the cursor moves across the chromatogram, the Timed Event table automatically scrolls to the event that corresponds to the cursor's coordinates.

The cursor can be useful if you want to change a timed event based on the data displayed by the chromatogram.

To update a timed event based on the location of the Chromatogram Viewer's cursor, do the following:

- 1. Select the live or archived trace that you want to use as the source for changing the timed event.
- 2. Double-click on the graph to display the cursor. The cursor's coordinates display in the upper left corner of the graph. The x-coordinate represents the analysis time in seconds. With this information in mind, drag the cursor to the desired location.

Note

To toggle the cursor's size between coarse movement (less accurate) and fine movement (more accurate), click Cursor from the Graph bar.

- 3. Go to the Time Events table and right-click on the event.
- 4. Select **Update Time from Cursor**. The event's time will be changed to match the cursor's time (x-coordinate).
- 5. To save your changes, right-click on the table and select **Save Changes**. The changes will affect the next analysis run. To return to the Timed Events table without saving your changes, select **Discard Changes**.

2.5.5 Working with the Component Data Table

The Chromatogram Viewer displays a compact version of the Component Data table beneath the Timed Events table. See "Managing Component Data Tables" on page 4-5 for more information.

Component	Det	Time (s)	
PROPANE	1	53.0	
i-BUTANE	1	68.1	
n-BUTANE	1	78.1	
NEOPENTANE	1	0.0	
i-PENTANE	1	114.5	
n-PENTANE	1	129.9	
NITROGEN	1	152.7	
METHANE	1	156.9	
CARBON DIOXIDE	1	192.7	-

The Component Data table

displays the following data for each component:

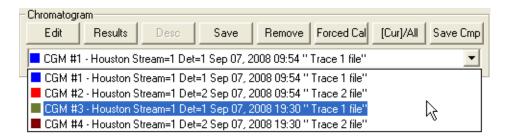
Name	Description
Componet	The name of the component.
Det	Identifies the detector associated with the component.
Time (s)	The retention time for the component.

Retention times for components from live or archived chromatograms can be edited from the Chromatogram Viewer by right-clicking on the Component Data table. The changes will affect the next analysis run. The following commands are also available by right-clicking on the table:

- Auto Scroll When checked, if a live trace has been selected from the Chromatogram pull-down menu, the Component Data table will keep its focus on the component closest in time by highlighting that it in dark blue.
- **Save Sheet** Allows you to save the table to the PC in one of the following formats: TXT, CSV, XLS, HTM, or XML.
- **Copy to Clipboard** Allows you to copy the table to the clipboard . This data can be pasted into another application such as Microsoft Word or Microsoft Excel.
- **Print Sheet** Allows you to print the table to your default printer.

2.5.6 Editing retention times from the Chromatogram Viewer

To edit the retention time for a component, do the following:


- 1. Right-click on the Component Data table and select **Edit Retention Times**. The *Ret* column turns white, indicating that its cells are editable.
- 2. Click on the *Ret* cell for the component that you want edit, and enter a new retention time value, in seconds. The value must be less than the Analysis time.
- 3. To save your changes, right-click on the table and select **Save Changes**. The changes will affect the next analysis run. To return to the Component Data table without saving your changes, select **Discard Changes**.

2.5.7 Viewing raw data

Use the Raw Data button to display the Raw Data table for the selected trace.

1. Use the Chromatogram pull-down menu to select a specific trace.

Figure 2-29. Chromatogram pull-down menu

Note

Even though you are selecting a *trace*, the data that is displayed will be fore the *chromatogram*, which may include more than one trace.

2. Click **Raw Data**. The *Raw Data* window displays and shows the raw data for the selected chromatogram.

Figure 2-30. The Raw Data window

eak No.	Retention Time	Peak Area	Peak Height	Det	Method	Baseline Start	Baseline End	Integration Start	Integration End		artia 'eak
1	49.3	216650380	2151232.9	1	4	1996692	1990606	46.5	57.2	1.9 No	
2	63.6	74701557	516795.5	1	2	1989777	1989141	59.3	68.9	2.7 No	
3	73.1	76138682	460242.0	1	2	1989141	1988570	68.9	77.6	3.1 No	
4	80.8	22277022	110660.2	1	3	1988570	1987686	77.6	90.9	3.8 No	
5	106.6	452135	1820.9	1	4	1988068	1987925	101.8	115.4	4.6 No	
6	151.6	334439601	5105314.1	1	2	1989622	1989748	148.6	154.6	1.2 No	
7	155.8	9420187414	63641124.7	1	3	1989748	1990172	154.6	175.0	2.9 No	
8	184.9	155987319	1023102.7	1	4	1989452	1989157	180.0	197.0	2.9 No	
9	210.6	844817693	4070820.9	1	100	1989033	1989408	204.6	231.9	4.0 No	
1	69.6	62292549	420935.5	2	2	8778351	8730592	68.0	71.4	2.5 Yes	
2	73.2	24484256	425384.5	2	2	8730592	8637295	71.4	78.2	2.8 Yes	
3	81.4	195669394	259483.4	2	2	8637295	8418493	78.2	93.9	6.6 Yes	
4	98.6	21762281	5400.0	2	3	8418493	8335193	93.9	99.9	0.7 Yes	
5	100.0	304208480	0.0	2	500	8446900	8306409	69.0	100.0	0.0 No	
6	141.8	46475	267.5	2	1	8229064	8229001	140.3	147.4	2.2 Yes	
7	150.0	AC 47E	0.0	2	E00	0000700	000000	100 5	150.0	0.0 N-	
										Clo	

The following data displays for each peak from the trace:

Name	Description
No.	Numerical identifier for the peak, listed by the order of discovery.
Ret Time	Time, in seconds, that the component eluted.
Peak Area	The area under the peak.
Peak Height	The maximum height of the peak.
Det	The detector associated with the peak.
Method	Method of peak detection. Options are: • 1 (Baseline) • 2 (Fused Peak) • 3 (Last Fused Peak) • 4 (Tangent Skim) • 100 (Inhibit) • 300 (Forced Integration) • 500 (Summation)
Integ. Start	Time, in seconds, when integration started.

Name	Description
Integ. Stop	Time, in seconds, when integration stopped.
Peak Width Half Height	The width of the peak taken at half of the peak's height.
Is Partial Peak	If Y, then the Partial Peak value is used in the summation calculation; if N, then the Partial Peak value is not used in the summation calculation.

2.6 Setting the gas chromatograph's date and time

When MON 20/20 connects to a gas chromatograph, the Status Bar displays the gas chromatograph's date and time.

Note

The date and time displayed for the GC may be different from the user's date and time, depending on the physical location of the GC.

To set the gas chromatograph's date and time, do the following:

1. Select **View/Set Date Time...** from the **Chromatograph** menu. The *View/Set Date Time* window displays.

Date :	7/14/2011 👻	
Time :	12:51:57 PM Standard Time	
🗌 Enable Dayli	ght Savings	
Daylight Saving	s	
© First	Sunday of January	~
C 1	January	
	at 12:00:00 AM × Advance Clock 60 × Mi	inutes
End Date		
© First	Sunday of January	T
C 1	January	
	at 12:00:00 AM 💉 Setback Clock 60 💌 M	1inutes
	Save OK	<u>C</u> ance

Figure 2-31. The View/Set Date Time window

- 2. Use the drop-down menus to set the date and time. To enable or adjust daylight savings, see "Adjusting daylight savings" on page 2-42.
- 3. Click OK.

2.6.1 Adjusting daylight savings

Daylight savings time is the practice of temporarily advancing clocks so that afternoons have more daylight and mornings have less. Typically clocks are adjusted forward one hour near the start of spring and are adjusted backward in autumn. Since the use of daylight savings time is not universal, you have the option of enabling or disabling it in MON 20/20.

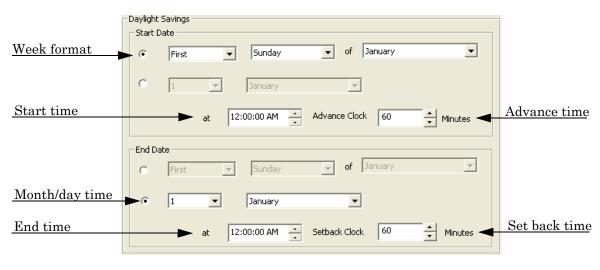
To configure MON 20/20 to use daylight savings time, do the following:

1. Select **View/Set Date Time...** from the **Chromatograph** menu. The *View/Set Date Time* window displays.

View/Set Date T	lime 🔳
Date :	7/14/2011
Time :	12:51:57 PM • Standard Time
🔲 Enable Dayligh	t Savings
-Daylight Savings - Start Date	
© First	Sunday of January V
C 1	January
	at 12:00:00 AM 🔆 Advance Clock 60 Minutes
End Date	
© First	Sunday of January
C 1	January
	at 12:00:00 AM Setback Clock 60 Minutes
	Save OK Cancel

Figure 2-32. The View/Set Date Time window

Note


Make sure the GC is set to the current date and time before enabling the daylight savings feature.

- 2. Click the **Enable Daylight Savings** checkbox. The *Daylight Savings* section will be enabled, giving you the following two options for setting the start and end times for daylight savings:
 - <u>Week format</u>. You can specify on which week day, of what week, and of what month DST to start and end.
 - <u>Month/Day format</u>. You can specify the exact day of the month and the month number for which you want daylight savings to start and end.

Note

These formats can be used interchangeably; for example, the Week format can be used to specify the start date, and the Month/Day format can be used to specify the end date.

Figure 2-33. The Daylight Savings options

- 3. Set the start date for daylight savings time.
- 4. Set the start time and the advance time.

- 5. Set the end date for daylight savings time.
- 6. Set the end time and the setback time.
- 7. To implement your changes without closing the *View/Set Date Time* window, click **Save**. To implement your changes and close the *View/Set Date Time* window, click **OK**.

Note

Daylight savings time should be configured each time the feature is enabled; thereafter, each year MON 20/20 will automatically compute the start and end times based on the initial configuration.

Section 3: Using the hardware functions

Hard <u>w</u> are	<u>Application</u>	Log:
Heaters		
⊻alves		
D <u>e</u> tecto	rs	
Discrete	Inputs	
Discrete	Outputs	
<u>A</u> nalog I	inputs	
Analog (Outputs	
Installed	Hardware	

Many of a gas chromatograph's hardware components—such as its heaters, valves, and discrete outputs—can be easily managed through MON 20/20.

This chapter shows you how to view and administer each of a gas chromatograph's major hardware components.

This chapter also shows you how to view an inventory of all of a gas chromatograph's installed hardware components.

3.1 Controlling the temperature of the gas chromatograph's heaters

By selecting **Heaters...** from the **Hardware** menu, you can set a heater's desired temperature or fix its power output.

Each heater can be set to one of the following modes:

- Auto Allows you to set the desired tempature for the heater.
- **Fixed On** Allows you to set the power output for the heater without regard to temperature.
- Not Used Removes the heater from service.

Note

Typically, Heater 1 is the "high hat" heater, and Heater 2 is the column heater.

Note

This window contains a hidden column labelled *Physical Name*. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.

3.1.1 Renaming a heater

To assign an identifying label to a heater, do the following:

1. Select **Heaters...** from the **Hardware** menu. The *Heaters* window displays.

Figure 3-1. The Heaters window

	Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PW/M Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
		DEGC				PCT			DEGC	PCT	
Heater 1	Auto	82.0	15.00	0.05	50			DC	82.0	20.2	Ok
Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
Heater 3	Fixed On					0.0	~	DC	28.6	0.0	Ok
Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

2. Double-click on the appropriate row under the *Label* column for the heater that you want to name.

Note

The heaters are labelled **Heater 1** - **Heater** N by default, where N equals the total number of heaters available to the GC.

- 3. Type in a descriptive name for the heater. This name must be unique; two heaters cannot share the same label.
- 4. Click **OK**.

3.1.2 Setting the heater's type

To set a heater's type, do the following:

1. Select **Heaters...** from the **Hardware** menu.

Figure 3-2. The Heaters window

		Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PW/M Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
			DEGC		. 4		PCT			DEGC	PCT	
	Heater 1	Auto	82.0	15.00	0.05	50			DC	82.0	20.2	Ok
2	Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
	Heater 3	Fixed On					0.0	~	DC	28.6	0.0	Ok
	Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

- 2. Click on the appropriate *Heater Type* cell and select **AC** or **DC** from the drop-down list.
- 3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

3.1.3 Monitoring the temperature of a heater

To check a heater's temperature, select **Heaters...** from the **Hardware** menu.

Figure 3-3. The Heaters window

		Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PWM Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
			DEGC				PCT			DEGC	PCT	
	Heater 1	Auto	82.0	15.00	0.05	50			DC	82.0	20.2	Ok
2	Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
	Heater 3	Fixed On					0.0	¥	DC	28.6	0.0	Ok
	Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok
										Save	ок	Cance

The current temperature of each heater displays under the *Temperature* column, and updates in real time. The percentage of the GC's power output that is being used by each heater displays under the *Current PWM* column.

3.1.4 Monitoring the operational status of a heater

To check a heater's status, select **Heaters...** from the **Hardware** menu.

Figure 3-4. The Heaters window

		Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PW/M Output	Ignore Warm Start	Heater Type	Temperature	Current PW/M	Status
			DEGC				PCT			DEGC	PCT	
	Heater 1	Auto	82.0	15.00	0.05	50		1	DC	82.0	20.2	Ok
2	Heater 2	Auto	82.0	15.00	0.05	50		1	DC	82.0	12.1	Ok
	Heater 3	Fixed On					0.0		DC	28.6	0.0	Ok
4	Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

The status of each heater displays under the *Status* column. There are four possible status states, and their meanings are as follows:

ОК	The heater's control card is installed and is working correctly.
Not Installed	The heater's control card is not installed.
Out of Control	The heater is running and is in the process of reaching its temperature set point.
Error	The GC cannot communicate with the heater.

3.1.5 Setting the desired temperature

To set the desired temperature for a heater, do the following:

1. Select **Heaters...** from the **Hardware** menu. The *Heaters* window displays.

Figure 3-5. The Heaters window

	Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PW/M Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
		DEGC				PCT			DEGC	PCT	
Heater 1	Auto	82.0	15.00	0.05	50			DC	82.0	20.2	Ok
Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
Heater 3	Fixed On					0.0	~	DC	28.6	0.0	Ok
Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

- 2. For each heater that you want to set, select **Auto** from the appropriate row under the *Switch* column.
- 3. For each heater that you want to set, double-click on the appropriate row under the *Setpoint* column, and enter the desired temperature, in degrees Celsius. You can enter a value between **20** and **500**.
- 4. To exclude a heater from the Warm Start process, select its *Ignore Warm Start* check box.

Note

A *warm start* occurs when the GC restarts after having been shut down during an auto sequence analysis run. The GC will activate the heaters and wait until they reach their setpoints and the temperature stabilizes; the GC will then resume the auto sequence run.

5. The appropriate rows under the *PID Gain*, *PID Integral*, and *PID Derivative* columns can also be edited by double-clicking and entering a new value. The value ranges for each column is as follows:

PID Gain	0 - 500
PID Integral	0 - 500
PID Derivative	0 - 50000

- 6. To save the changes and leave the window open so that you can monitor the heaters' status, click **Save**. The current temperature of each heater displays in the *Temperature* column, and is updated in real time.
- 7. To save the changes and close the window, click **OK**.

3.1.6 Setting PWM Output

Note

Pulse-Width Modulation (PWM) is a technique for providing intermediate amounts of electrical power between fully on and fully off.

A heater needs voltage to operate. The amount of voltage that is delivered to a heater can be controlled manually when the heater is set to **Fixed On** mode. Setting a heater to **Fixed On** mode can be useful when troubleshooting heater issues.

CAUTION

<u>Fixed On mode is not recommended for general GC operations</u>. Switching a heater to Fixed On mode removes its ability to maintain a constant temperature because the power delivered to the heater will not fluctuate based on the temperature setpoint, but will instead remain at the level set by the user.

To set a heater's PWM Output, do the following:

1. Select **Heaters...** from the **Hardware** menu. The *Heaters* window displays.

	Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PWM Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
		DEGC				PCT			DEGC	PCT	
Heater 1	Auto	82.0	15.00	0.05	50			DC	82.0	20.2	Ok
Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
Heater 3	Fixed On					0.0		DC	28.6	0.0	Ok
Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

- 2. For each heater that you want to set, select **Fixed On** from the appropriate row under the *Switch* column.
- 3. For each heater that you want to set, double-click on the appropriate row under the *Fixed PWM Output* column, and enter the desired percentage of output. You can enter a decimal value between **0** and **100**.

CAUTION

It is not recommended that a value of 95 or higher be used for a prolonged time, as this may damage the equipment.

- 4. To save the changes and leave the window open so that you can monitor the heaters' status, click **Save**. The current temperature of each heater displays in the *Temperature* column, and is updated in real time.
- 5. To save the changes and close the window, click **OK**.

3.1.7 Removing a heater from service

To remove a heater from service, do the following:

1. Select **Heaters...** from the **Hardware** menu. The *Heaters* window displays.

Figure 3-7. The Heaters window

		Switch	Setpoint	PID Gain	PID Integral	PID Derivative	Fixed PW/M Output	Ignore Warm Start	Heater Type	Temperature	Current PWM	Status
			DEGC				PCT			DEGC	PCT	
	Heater 1	Auto	82.0	15.00	0.05				DC	82.0	20.2	Ok
2	Heater 2	Auto	82.0	15.00	0.05	50			DC	82.0	12.1	Ok
	Heater 3	Fixed On					0.0	¥	DC	28.6	0.0	Ok
	Heater 4	Auto	50.0	15.00	0.05	50		×	DC	50.0	7.4	Ok

- 2. For each heater that you want to set, select **Not Used** from the appropriate row under the *Switch* column. The row turns turqoise, indicating that it is no longer in service.
- 3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

3.2 Configuring the valves

MON 20/20 allows you to do the following from the Valves window:

- Assign identifying labels to each valve.
- Monitor valve operation.
- Control the operation modes for each valve.

Note

This window contains a hidden column labelled *Physical Name*. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.

3.2.1 Renaming a valve

Give each valve a descriptive label to avoid confusing one valve for another. To assign an identifying label, do the following:

1. Select Valves... from the Hardware menu. The Valves window displays.

	Label	Switch	Usage	Invert Polarity	State	Stat	us				
	BF_1	Auto	Analyzr01		Off	Ok					
2	BF_2	Auto	Analyzr02			Ok					
	Dual Column	Auto	Analyzr03	V	On	Ok					
1	SSO1	Auto	Analyzr04		Off	Ok					
	SS02	Auto	Analyzr05		Off	Ok					
	Stream1_Valve	Auto	Stream		Off	Ok					
7	Stream2_Valve	Auto	Stream		On	Ok					
	Valve 8	Off	FID H2 Valve		Off	Ok					
	Valve 9	Auto	Unused		Off	Ok					
	Valve 10	Auto	Unused		Off	Ok					
	Valve 11	Auto	Unused		Off	Ok					
2	Valve 12	Auto	Unused		Off	Ok					
								Sav	e	ОК	Cance

2. Double-click on the appropriate row under the *Label* column for the valve that you want to name.

Note

The values are labelled **Value 1** - **Value** N by default, where N equals the total number of values available to the GC.

- 3. Type in a new descriptive name for the valve.
- 4. Click OK.

3.2.2 Setting a valve's operational mode

A valve has three operational modes: Auto, On, and Off.

- Setting the valve to **Off** means that the valve will turn off and remain off until the operational mode is changed.
- Setting the valve to **Auto** means that the valve will turn on and off according to the Timed Events table.
- Setting the valve to **On** means that the valve will turn on and remain on until the operational mode is changed.

The GC's switch panel valve settings override MON 20/20's valve settings.

To set a valve's operational mode, do the following:

1. Select Valves... from the Hardware menu. The Valves window displays.

Figure 3-9. The Valves window

	Label	Switch	Usage	Invert Polarity	State	Status	
	BF_1	Auto	Analyzr01		Off	Ok	
2	BF_2	Auto	Analyzr02		Off	Ok	
	Dual Column	Auto	Analyzr03	V	On	Ok	
1	SSO1	Auto	Analyzr04		Off	Ok	
	SSO2	Auto	Analyzr05		Off	Ok	
	Stream1_Valve	Auto	Stream		Off	Ok	
	Stream2_Valve	Auto	Stream		On	Ok	
	Valve 8	Off	FID H2 Valve		Off	Ok	
	Valve 9	Auto	Unused		Off	Ok	
	Valve 10	Auto	Unused		Off	Ok	
	Valve 11	Auto	Unused		Off	Ok	
2	Valve 12	Auto	Unused		Off	Ok	
							Save OK Cano

Note

- 2. Select the desired mode from the drop-down menu under the *Switch* cloumn for the valve.
- 3. To save the changes and leave the window open so that you can monitor the valve's progress, click **Save**. The current state of the valve displays in the *State* column, and is updated in real time.
- 4. To save the changes and close the window, click **OK**.

3.2.3 Monitoring the operational status of a valve

To check a valve's status, select Valves... from the Hardware menu.

		Switch	Usage	Invert Polarity	State	Status	
	BF_1	Auto	Analyzr01		Off	Ok	
	BF_2	Auto	Analyzr02		Off	Ok	
	Dual Column	Auto	Analyzr03	V	On	Ok	
	SSO1	Auto	Analyzr04		Off	Ok	
	SSO2	Auto	Analyzr05		Off	Ok	
	Stream1_Valve	Auto	Stream		Off	Ok	
	Stream2_Valve	Auto	Stream		On	Ok	
	Valve 8	Off	FID H2 Valve		Off	Ok	
)	Valve 9	Auto	Unused		Off	Ok	
	Valve 10	Auto	Unused		Off	Ok	
	Valve 11	Auto	Unused		Off	Ok	
2	Valve 12	Auto	Unused		Off	Ok	

Figure 3-10. The Valves window

The status of each valve displays under the *Status* column. There are five possible status readings, and their meanings are as follows:

ОК	The valve is installed and is working correctly.
Not Installed	The valve is not installed.
Under/Over Current Error	Unable to switch the solenoid on or off. There is a potential problem with the solenoid.
Error	The Heater/Solenoid board is installed but the GC cannot communicate with it.

3.2.4 Inverting the polarity of a valve

The **Invert Polariy** option reverses the effect of switching a valve on or off. By default, the **Invert Polarity** option is set to FALSE, which means that switching a valve to ON activates it, and switching the valve to OFF deactivates it. Setting **Invert Polarity** to TRUE means that switching a valve to ON *deactivates* it, and switching the valve to OFF *activates* it.

To set the polarity of a valve, do the following:

1. Select Valves... from the Hardware menu. The Valves window displays.

Figure 3-11. The Valves window

		Switch	Usage	Invert Polarity	State	Status	
	BF_1	Auto	Analyzr01		Off	Ok	
2	BF_2	Auto	Analyzr02		Off	Ok	
	Dual Column	Auto	Analyzr03	V	On	Ok	
	SSO1	Auto	Analyzr04		Off	Ok	
5	SSO2	Auto	Analyzr05		Off	Ok	
	Stream1_Valve	Auto	Stream		Off	Ok	
	Stream2_Valve	Auto	Stream		On	Ok	
	Valve 8	Off	FID H2 Valve		Off	Ok	
	Valve 9	Auto	Unused		Off	Ok	
	Valve 10	Auto	Unused		Off	Ok	
	Valve 11	Auto	Unused		Off	Ok	
	Valve 12	Auto	Unused		Off	Ok	
							Save OK Canc

2. If the *Invert Polarity* checkbox is selected, it is set to **True**; to set it to **False**, uncheck the box by clicking it. If the *Invert Polarity* checkbox is not selected, it is set to **False**; to set it to **True**, click the box.

A valve's usage mode determines its general function, or role, during an analysis run. A valve can be assigned one of the following usage modes:

- DO
- FID H2 Valve
- Common Alarm
- Stream
- Analyzer01
 - •••
- Analyzer016

To set the usage mode for a valve, do the following:

1. Select Valves... from the Hardware menu. The Valves window displays.

Figure 3-12. The Valves window

J	Label	Switch	Usage	Invert Polarity	State	Status			
	BF_1	Auto	Analyzr01		Off	Ok			
	BF_2	Auto	Analyzr02		Off	Ok			
	Dual Column	Auto	Analyzr03	¥	On	Ok			
	SSO1	Auto	Analyzr04		Off	Ok			
	SSO2	Auto	Analyzr05		Off	Ok			
	Stream1_Valve	Auto	Stream		Off	Ok			
	Stream2_Valve	Auto	Stream		On	Ok			
	Valve 8	Off	FID H2 Valve		Off	Ok			
	Valve 9	Auto	Unused		Off	Ok			
	Valve 10	Auto	Unused		Off	Ok			
	Valve 11	Auto	Unused		Off	Ok			
2	Valve 12	Auto	Unused		Off	Ok			
							Sav	 ОК	Cance

- 2. Select the desired mode from the drop-down menu under the *Usage* cloumn for the valve.
- 3. To save the changes and leave the window open so that you can monitor the valve's progress, click **Save**. The current state of the valve displays in the *State* column, and is updated in real time.
- 4. To save the changes and close the window, click **OK**.

3.3 Controlling the detectors

Use the *Detectors* window to monitor the activity and status of the GC's detectors.

To view the *Detectors* window, select **Detectors...** from the **Hardware** menu.

)et#		1	2	
)etector		FPD	TCD	
ID Temp RTD				
ID Ignition				
inition Attempts				
/ait Time Bet Tries	SEC			
niter On Duration	SEC			
lame On Sense Temp	DEGC			
lame Out Sense Temp	DEGC			
PD Flame Status DI		Discrete Input 3		
reamp Val		-77041	83816	
ID Flame Temp	DEGC			
lame Status		On		
2 Valve Cur State				
caling Factor		11.99659729	11.99206448	
gniter Status				
lectrometer Voltage	V			
re Amplifier Voltage	V	-0.002		
olarizing Voltage	V			
ID Gain Status				
tatus		Ok	Ok	
Gain High Ignite	Оре	n H2 Valve NULL Electrometer	Auto-Zero Right(0)	Left(0)

Figure 3-13. The Detectors window showing a TCD and an FID

Note

Before making any modifications to this window, halt the analysis. See "Halting an analysis" on page 6-1 for more information.

Note

Blue cells display read-only data; white cells display editable data.

The following data displays for each detector:

Name	Description
Det#	Numerical identifier for the detector to which the following data applies.
Detector	Options, which depend on your GC's configuration, are TCD , FPD , or FID .
FID Temp RTD	Applies to FIDs only. Select the appropriate RTD from the drop-down list. The RTD measures the temperature of the FID flame.
FID Ignition	Applies to FIDs only. Select Manual if you want to control the ignition of the FID; select Auto if you want the GC to control the ignition of the FID.
Ignition Attempts	Applies to FIDs only. Indicates the number of times the GC will try to light the flame. If an 'Auto' FID ignition sequence fails to light the flame after the specified number of attempts, the GC will close the hydrogen valve, switch the FID ignition parameter to Manual, and set an active alarm.
Wait Time Bet Tries	Applies to FIDs only. Indicates the amount of time, in seconds, the GC will wait between ignition attempts.
Igniter On Duration	Applies to FIDs only. Indicates the length of time that the igniter will remain on.
Flame On Sense Temp	Applies to FIDs only. The flame ignites when the FID internal temperature exceeds the value set in this field.
Flame Out Sense Temp	Applies to FIDs only. The flame is extinguished when the FID internal temperature falls below the value set in this field.
FPD Flame Status DI	Applies to FPDs only. Allows you to select from a list of available digital inputs. The digital input that is selected will receive the FPD's flame status value.
Preamp Val	FID count. Read-only. See "Resetting the preamp value" on page 3-22 for more information.
FID Flame Temp	Temperature of the FID flame as read by the RTD. Read-only.
Flame Status	Options are: Off, On, and Over Temperature. Read-only.
H2 Valve Cur State	Options are: Open and Closed . Read-only.
Scaling Factor	Preamp calibration factor.
Igniter Status	Options are: Off and On. Read-only.
Electrometer Voltage	Output at first stage of FID preamp. Read-only.

Name	Description
Pre Amplifier Voltage	Output at second stage of FID preamp. Read-only.
Polarizing Voltage	Igniter voltage. Read-only.
FID Gain Status	Options are: Low and High.
Status	Options are: Ok, Not Installed and Internal Error. Read-only.

3.3.1 Offsetting the baseline

In some situations that involve TCD detectors the baseline may be displayed either too high on the graph, in which case the tops of the peaks are cut off, or too low on the graph, so that the bases of the peaks are cut off. If this occurs it is possible to offset the baseline either up or down so that the entire peak can be displayed on the graph. This offset will be applied to all traces—live, archived and saved—that are displayed thereafter.

To offset the baseline, do the following:

1. Select **Detectors...** from the **Hardware** menu. The *Detectors* window displays.

et #	1	2	
etector	TCD	TCD	
D Temp RTD			
D Ignition			
nition Attempts			
ait Time Bet Tries	SEC		
niter On Duration	SEC		
ame On Sense Temp	DEGC		
ame Out Sense Temp	DEGC		
PD Flame Status DI			
eamp Val	1900978	8112024	
D Flame Temp	DEGC		
ame Status			
2 Valve Cur State			
caling Factor	11.99848747	11.99703121	
niter Status			
ectrometer Voltage	V		
e Amplifier Voltage	V		
olarizing Voltage	V		
D Gain Status			
tatus	Ok	Ok	
Gain High Ignite	Open H2 Valve NULL	Electrometer Auto-Zero Right(0)	Left(0)

Figure 3-14. The Detectors window

- 2. Select the appropriate detector. It may be necessary to return to the Chromatogram Viewer to learn which detector is the source of the trace that needs to be offset.
- 3. To *lower* the baseline, click Left(N). Each time this button is clicked, N is incremented by -1. For example, is this is the first time the button has been clicked, Left(0) will be increment to Left(-1) and the baseline will be lowered one step. If Right(N) was clicked previously, then that button will be incremented by -1 first, until it reached Right(0); at the point, Left(N) will be incremented by -1.

Note

To reset the baseline to its default setting, click Right(N) and Left(N) until they read Right(0) and Left(0).

4. To *raise* the baseline, click **Right(N)**. Each time this button is clicked, N is incremented by 1. For example, is this is the first time the button has been clicked, Right(0) will be increment to Right(1) and the baseline will be raised one step. If Left(N) was clicked previously, then that button will be incremented by 1 first, until it reaches Left(0); at the point, Right(N) will be incremented by 1.

Note

To reset the baseline to its default setting, click Right(N) and Left(N) until they read Right(0) and Left(0).

5. After the baseline has been raised or lowered to your satisfaction, click **OK**.

3.3.2 Igniting the FID flame

If the *FID Ignition* field on the *Detectors* window is set to "Manual" and if the *Flame status* field is set to "Off", do the following to restart the flame:

- 1. Click **Open H2 Valve**. The *H2 Valve Cur State* field changes to "Open".
- 2. Click **Ignite**. The *Flame Status* field changes to "On" when the FID internal temperature exceeds the value set in the *Flame On Sense Temp* field.

Note

If the *FID Ignition* field is set to "Auto", the GC will automatically restart the flame if it goes out.

3.3.3 Resetting the preamp value

To reset the *Preamp Val* field on the *Detectors* window to 0, click **Auto-Zero**.

3.3.4 Balancing the preamp

In some situations that involve TCD detectors the baseline may be displayed either too high on the graph, in which case the tops of the peaks are cut off, or too low on the graph, so that the bases of the peaks are cut off. If this occurs it is possible to offset the baseline either up or down so that the entire peak can be displayed on the graph. This offset will be applied to all traces—live, archived and saved—that are displayed thereafter.

To offset the baseline, do the following:

1. Select **Detectors...** from the **Hardware** menu. The *Detectors* window displays.

Detectors				JX
Det #		1	2	
Detector		TCD 💌	FID	
Gain		Auto	Auto	
Filter				
Moving Avg				
FID Temp RTD			RTD:SLOT_2:RTD_5	
FID Ignition			Manual	
Ignition Attempts			1	
	SEC		40	
	SEC		10	
Flame On Sense Temp	DEG		150	
Flame Out Sense Temp	DEG		90	
H2 Valve State			0	
FID Gain			High	
	DEG		46.9	
Preamp Val		570528	-7097	
	DEG		77.4	
Flame Status			Off	
H2 Valve Cur State			Closed	
Scaling Factor		11.988402	11.991467	
Status		Ok	Ok	
Igniter Status		Off	Off	-
Ignite Or	pen Hi	2 Valve NULL Electrometer	Auto-Zero Right(0) Left(0	<u> </u>

Figure 3-15. The Detectors window

- 2. Select the appropriate detector. It may be necessary to return to the Chromatogram Viewer to learn which detector is the source of the trace that needs to be offset.
- 3. To *lower* the baseline, click Left(N). Each time this button is clicked, N is incremented by -1. For example, is this is the first time the button has been clicked, Left(0) will be increment to Left(-1) and the baseline will be lowered one step. If Right(N) was clicked previously, then that button will be incremented by -1 first, until it reached Right(0); at the point, Left(N) will be incremented by -1.

Note

To reset the baseline to its original setting, click Right(N) and Left(N) until they read Right(0) and Left(0).

4. To *raise* the baseline, click **Right(N)**. Each time this button is clicked, N is incremented by 1. For example, is this is the first time the button has been clicked, Right(0) will be increment to Right(1) and the baseline will be raised one step. If Left(N) was clicked previously, then that button will be incremented by 1 first, until it reaches Left(0); at the point, Right(N) will be incremented by 1.

Note

To reset the baseline to its original setting, click Right(N) and Left(N) until they read Right(0) and Left(0).

3.4 Managing your gas chromatograph's discrete inputs

You can use MON 20/20 to assign labels to the GC's discrete inputs and to control the discrete inputs' operational modes. The number of discrete inputs available depends on the GC.

Note

This window contains a hidden column labelled *Physical Name*. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.

3.4.1 Renaming a discrete input

Give each discrete input a descriptive label to avoid confusing one unit for another. To assign an identifying label, do the following:

1. Select **Discrete Inputs...** from the **Hardware** menu. The *Discrete Inputs* window displays.

		Switch	Invert Polarity	Current Value	Status
	Sample Flow Switch 1	Auto	Normally Open	Off	Ok
2	Sample Flow Switch 2	Auto	Normally Open	Off	Ok
3	Discrete Input 3	Auto	Normally Open	Off	Ok
4	Discrete Input 4	Auto	Normally Open	Off	Ok
5	Discrete Input 5	Auto	Normally Open	Off	Ok
	Pressure Switch 1	Auto	Normally Open	Off	Ok
7	Pressure Switch 2	Auto	Normally Open	Off	Ok
				Save	Гок

Figure 3-16. The Discrete Inputs window

2. Double-click on the appropriate row under the *Label* column for the discrete input that you want to rename.

Note

The discrete inputs are labelled **Discrete Input 1** - **Discrete Input** *N* by default, where *N* equals the total number of discrete inputs available to the GC.

- 3. Type in a new descriptive name for the discrete input.
- 4. Click OK.

3.4.2 Setting a discrete input's operational mode

A discrete input has three operational modes: Auto, On, and Off.

- Setting the discrete input to **Off** means that it will interpret all incoming signals as OFF, despite the true nature of the signal.
- Setting the discrete input to **Auto** means that it will analyze the incoming signal to determine whether it is ON or OFF.
- Setting the discrete input to **On** means that it will interpret all incoming signals as ON, despite the true nature of the signal.

Note

The GC's switch panel settings override MON 20/20's settings.

To set a discrete input's operational mode, do the following:

1. Select **Discrete Input...** from the **Hardware** menu. The **Discrete Input** window displays.

Figure 3-17. The Discrete Inputs window

		Invert Polarity	Current Value	Status	
ample Flow Switch 1	Auto	Normally Open	Off	Ok	
ample Flow Switch 2	Auto	Normally Open	Off	Ok	
iscrete Input 3	Auto	Normally Open	Off	Ok	
iscrete Input 4	Auto	Normally Open	Off	Ok	
iscrete Input 5	Auto	Normally Open	Off	Ok	
ressure Switch 1	Auto	Normally Open	Off	Ok	
ressure Switch 2	Auto	Normally Open	Off	Ok	
i	screte Input 3 screte Input 4 screte Input 5 essure Switch 1	screte Input 3 Auto screte Input 4 Auto screte Input 5 Auto essure Switch 1 Auto	screte Input 3 Auto Normally Open screte Input 4 Auto Normally Open screte Input 5 Auto Normally Open essure Switch 1 Auto Normally Open	screte Input 3 Auto Normally Open Off screte Input 4 Auto Normally Open Off screte Input 5 Auto Normally Open Off screte Input 5 Auto Normally Open Off essure Switch 1 Auto Normally Open Off	screte Input 3 Auto Normally Open Off Ok screte Input 4 Auto Normally Open Off Ok screte Input 5 Auto Normally Open Off Ok essure Switch 1 Auto Normally Open Off Ok

- 2. Select the desired mode from the drop-down menu under the *Switch* cloumn for the discrete input.
- 3. To save the changes and leave the window open so that you can monitor the discrete input's progress, click **Save**. The current state of the discrete input displays in the *State* column, and is updated in real time.
- 4. To save the changes and close the window, click OK.

3.4.3 Monitoring the operational status of a discrete input

To check a valve's status, select **Discrete Input...** from the **Hardware** menu.

Figure 3-18. The Discrete Inputs window

	Switch	Invert Polarity	Current Value	Status	
Sample Flow Switch 1	Auto	Normally Open	Off	Ok	
Sample Flow Switch 2	Auto	Normally Open	Off	Ok	
Discrete Input 3	Auto	Normally Open	Off	Ok	
Discrete Input 4	Auto	Normally Open	Off	Ok	
Discrete Input 5	Auto	Normally Open	Off	Ok	
Pressure Switch 1	Auto	Normally Open	Off	Ok	
Pressure Switch 2	Auto	Normally Open	Off	Ok	
			Save	Гок	Cance

The status of each discrete input displays under the *Status* column. There are three possible status readings, and their meanings are as follows:

ОК	The discrete input is installed and is working correctly.
Not Installed	The discrete input is not installed.
Error	The Heater/Solenoid board is installed but the GC cannot communicate with it.

3.4.4 Inverting the polarity of a discrete input

The **Invert Polariy** option reverses the way a voltage signal is interpreted by the discrete input. By default, the **Invert Polarity** option is set to Normally Open, which means that a low voltage signal is interpreted by the discrete input as ON, and a high voltage signal is interpreted by the discrete input as OFF. Setting **Invert Polarity** to Normally Closed means that a low voltage signal is interpreted by the discrete input as OFF, and a high voltage signal is interpreted by the discrete input as OFF.

To set the polarity of a discrete input, do the following:

1. Select **Discrete Input...** from the **Hardware** menu. The *Discrete Inputs* window displays.

Figure 3-19. The Discrete Inputs window

- Iq			Invert Polarity	Value	Status	
	Sample Flow Switch 1	Auto	Normally Open	Off	Ok	
9	Sample Flow Switch 2	Auto	Normally Open	Off	Ok	
C	Discrete Input 3	Auto	Normally Open	Off	Ok	
C	Discrete Input 4	Auto	Normally Open	Off	Ok	
C	Discrete Input 5	Auto	Normally Open	Off	Ok	
F	Pressure Switch 1	Auto	Normally Open	Off	Ok	
F	Pressure Switch 2	Auto	Normally Open	Off	Ok	
F	Pressure Switch 2	Auto	Normally Open	Off	Ok	

2. Select **Normally Open** or **Normally Closed** from the drop-down menu under the *Invert Polarity* cloumn.

You can use MON 20/20 to assign labels to the GC's discrete outputs and to control the discrete outputs' operational modes. The number of discrete outputs available depends on the GC.

Note

This window contains a hidden column labelled *Physical Name*. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.

3.5.1 Renaming a discrete output

Give each discrete output a descriptive label to avoid confusing one unit for another. To assign an identifying label, do the following:

1. Select **Discrete Outputs...** from the **Hardware** menu. The *Discrete Outputs* window displays.

		Usage	Switch	Start Time	Duration	Interval	Current Value	Status
					SEC	HR		
	Discrete Output 1	Common Alarm	Auto				On	Ok
2	Discrete Output 2	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
	Discrete Output 3	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
4	Discrete Output 4	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
5	Discrete Output 5	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
						Save]	IK Cance

Figure 3-20. The Discrete Outputs window

2. Double-click on the appropriate row under the *Label* column for the discrete output that you want to rename.

Note

The discrete outputs are labeled **Discrete Output 1** - **Discrete Output** N by default, where N equals the total number of discrete outputs available to the GC.

- 3. Type in a new descriptive name for the discrete output.
- 4. Click OK.

3.5.2 Setting a discrete output's operational mode

A discrete output has three operational modes: Auto, On, and Off.

- Setting the discrete output to **Off** means that the discrete output will turn off and remain off until the operational mode is changed.
- Setting the discrete output to **Auto** means that the discrete output will turn on and off according to the Timed Events table or the Discrete Outputs table.
- Setting the discrete output to **On** means that the discrete output will turn on and remain on until the operational mode is changed.

To set a discrete output's operational mode, do the following:

1. Select **Discrete Output...** from the **Hardware** menu. The *Discrete Output* window displays.

		Usage	Switch	Start Time	Duration	Interval	Current Value	Status
					SEC	HR		
	Discrete Output 1	Common Alarm	Auto				On	Ok
	Discrete Output 2	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
	Discrete Output 3	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
1	Discrete Output 4	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
	Discrete Output 5	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
						Save		IK Cance

Figure 3-21. The Discrete Outputs window

- 2. Select the desired mode from the drop-down menu under the *Switch* cloumn for the discrete output.
- 3. To save the changes and leave the window open so that you can monitor the discrete output's progress, click **Save**. To save the changes and close the window, click **OK**. The current state of the discrete output displays in the *State* column, and is updated in real time.

3.5.3 Monitoring the operational status of a discrete output

To check a valve's status, select **Discrete Output...** from the **Hardware** menu.

Figure 3-22.	The Discrete	Outputs	window
--------------	--------------	---------	--------

	Usage	Switch	Start Time	Duration	Interval	Current Value	Status
				SEC	HR		
Discrete Output 1	Common Alarm	Auto				On	Ok
Discrete Output 2	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
Discrete Output 3	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
Discrete Output 4	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
Discrete Output 5	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
				ſ	Save		JK Cance

The status of each discrete output displays under the *Status* column. There are three possible status readings, and their meanings are as follows:

ОК	The discrete output is installed and is working correctly.
Not Installed	The discrete output is not installed.
Error	The Heater/Solenoid board is installed but the GC cannot communicate with it.

3.5.4 Setting the usage mode for a discrete output

A discrete output's usage mode determines which signals are routed to it via the Limited Alarm and Discrete Alarm functions. A discrete output can be assigned one of the following usage modes:

- DO
- FID H2 Valve
- Common Alarm
- Stream
- Analyzer01
 - •••
- Analyzer016

To set the usage mode for a discrete output, do the following:

1. Select **Discrete Output...** from the **Hardware** menu. The *Discrete Output* window displays.

Figure 3-23. The Discrete Outputs window

		Usage	Switch	Start Time	Duration	Interval	Current Value	Status
					SEC	HR		
	Discrete Output 1	Common Alarm	Auto				On	Ok
2	Discrete Output 2	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
	Discrete Output 3	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
	Discrete Output 4	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
5	Discrete Output 5	DO	Auto	1/1/1970 12:00:00 AM	00:00:00	1	Off	Ok
						Save	1	IK Cance

- 2. Select the desired mode from the drop-down menu under the *Usage* cloumn for the discrete output.
- 3. If you select **DO** for *Usage*, and **Auto** for *Switch*, then you must also set the *Start Time* and *Duration*. Double-click on the appropriate row under the *Start Time* column and enter the time that the digital output should be turned on. Double-click on the appropriate row under the *Duration* column and enter the amount of time, in seconds, that the digital output should remain on. Double-click on the appropriate row under the *Interval* column and enter the amount of time, in hours, that should pass before the digital output turns on again.
- 4. To save the changes and leave the window open so that you can monitor the discrete output's progress, click **Save**. To save the changes and close the window, click **OK**. The current statr of the discrete output displays in the *State* column, and is updated in real time.

3.6 Managing your gas chromatograph's analog inputs

With MON 20/20 you can control analog inputs in the following ways:

- Assign identifying labels.
- Assign scale ranges.
- Calibrate analog inputs for zero and full scale values.

Electrical current signals ranging from 4 to 20 mA ($\pm 10\%$) are accepted as analog inputs.

Note

This window contains a hidden column labelled *Physical Name*. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.

3.6.1 Renaming an analog input

Give each analog input a descriptive label to avoid confusing one unit for another. To assign an identifying label, do the following:

1. Select **Analog Inputs...** from the **Hardware** menu. The *Analog Inputs* window displays.

Label	Zero Scale	Full Scale		mA/Volts	Fixed Value		Volts V	Current Value			Zero Adj V	Full Adj	
Analog Input 1	0	100	Variable	mά		MA 0.00	V	-25	MA 4	MA 20		V 5	
Analog Input 2	- Ŭ		Variable			0.00		-25		20		5	

2. Double-click on the appropriate row under the *Label* column for the analog input that you want to rename.

The analog input devices are labelled Analog Input 1 and Analog Input N by default, where N equals the total number of analog inputs available to the GC.

- 3. Type in a new descriptive name for the analog input.
- 4. Click **OK**.

Note

3.6.2 Setting a analog input's operational mode

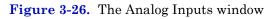
An analog input has two operational modes: Variable and Fixed.

- Setting the switch to **Variable** means that the analog input will be set automatically, based on the signal it receives.
- Setting the switch to **Fixed** means that the analog input will be set to the value that you enter in the appropriate row under the *Fixed Value* column.

To set an analog input's operational mode, do the following:

1. Select **Analog Input...** from the **Hardware** menu. The *Analog Input* window displays.

Figure 3-25. The Analog Inputs window


-	Analog Inputs														
	Label	Zero Scale	Full Scale	Switch	mA/Volts	Fixed Value		Volts	Current Value						
			100				MA	٧	05	MA	MA	V	V		
	Analog Input 1 2 Analog Input 2	0		Variable Variable			0.00		-25 -25		20 20		5		
	Z Analog Input Z	U	100	valiable	mes		0.00	21 2	-20	4	20	-	5		
1															
									Auto	Cal(F4)	1 0	ave	OK	- 1	Cancel
									Bato	Cu(14)		ave.			Cancel
															16

- 2. Select the desired mode from the drop-down menu under the *Switch* cloumn for the analog input.
- 3. To save the changes and leave the window open so that you can monitor the analog input, click **Save**. To save the changes and close the window, click **OK**. The current value of the analog input signal displays in the *Current Value* column, and is updated in real time.

3.6.3 Setting the scale values for an analog input device

To set the zero scale and full scale, which are used when converting the analog input value, do the following:

1. Select **Analog Input...** from the **Hardware** menu. The *Analog Input* window displays.

Label	Zero Scale	Full Scale	Switch	mA/Volts	Fixed Value	mΔ	Volts	Current Value	Zero Adi	Full Adi	Zero Adi	Full Adi	
		T GIT C COLO			Third Takio	MA	V		MA	MA	V	V	
Analog Input 1	0) Variable			0.00		-25		20		5	
Analog Input 2	0	100) Variable	mΑ		0.00		-25	4	20	1	5	

- 2. Double-click on appropriate row under the *Zero Scale* column and enter a zero scale value.
- 3. Double-click on appropriate row under the *Full Scale* column and enter a full scale value.
- 4. To save the changes and leave the window open so that you can monitor the analog input, click **Save**. To save the changes and close the window, click **OK**.

3.6.4 Setting the type of analog input signal

The GC's analog inputs can receive two types of signal: volts and a 4-20 mA current, which is the industry standard. To set the type of signal generated by the analog input device, do the following:

1. Select **Analog Input...** from the **Hardware** menu. The *Analog Input* window displays.

Label	Zero Scale	Full Scale	Switch	mA/Volts	Fixed Value		Volts	Current Value					
And a local d	0	100	V. 2.11			MA	V	05	MA	MA	V	V	
Analog Input 1 Analog Input 2	0		Variable Variable			0.00		-25		20 20		9	
Analog input 2		100	valiable	me		0.00		-20	4	20		9	÷

Figure 3-27. The Analog Inputs window

- 2. Select the signal type from the appropriate row under the mA/Volt column.
- 3. To save the changes and leave the window open so that you can monitor the analog input's progress, click **Save**. To save the changes and close the window, click **OK**. The type of signal being generated displays in the mA/Volts column, and is updated in real time.

3.6.5 Monitoring the status of an analog input

To check an analog input's status, select **Analog Input...** from the **Hardware** menu.

Figure 3-28. The Analog Inputs window

	Full Scale	Switch	mA/Volts	Fixed Value	MA	Volts V	Current Value	Zero Adj MA	Full Adj MA	Zero Adj V	Full Adj		
1 0	100 V	ariable i	nA			v	-25			1	5		
0					0.00				20	1	5		
	0					0 100 Variable mA 0.00	0 100 Variable mA 0.00	0 100 Variable mA 0.00 -25	0 100 Variable mA 0.00 -25 4	0 100 Variable mA 0.00 -25 4 20	0 100 Variable mA 0.00 -25 4 20 1	0 100 Variable mA 0.00 -25 4 20 1 5	0 100 Variable mA 0.00 -25 4 20 1 5

The operational status of each analog input displays under the *Status* column. There are three possible status readings, and their meanings are as follows:

ОК	The analog input is installed and is working correctly.
Not Installed	The analog input is not installed.
Error	The analog input is installed but the GC cannot communicate with it.

This window also displays other types of data, such as the following:

- mA/Volts The type of analog input signal being received.
- **mA** If **mA** displays in the *mA*/*Volts* column, then this column displays the amount of current being received, in milliamperes.
- **Volts** If **Volts** displays in the *mA*/*Volts* column, then this column displays the amount of current being received, in volts.
- Cur Val The current value of the analog input signal.

3.6.6 Calibrating an analog input

To calibrate an analog input, do the following:

1. Select **Analog Input...** from the **Hardware** menu. The *Analog Input* window displays.

Figure 3-29. The Analog Inputs window

nalog Inputs														E
Label	Zero Scale	Full Scale	Switch	mA/Volts	Fixed Value		Volts	Current Value					2	
Analog Input 1	- 0	100	Variable	roΔ		MA 0.00	٧	-25	MA 4	MA 20	V 1	V 5		
Analog Input 2			Variable			0.00		-25				5		
											ave			

- 2. Click on the analog input that you want to calibrate.
- 3. Set the analog input's *Zero Scale* by entering its minimum anticipated value.
- 4. Set the analog input's *Full Scale* by entering your maximum anticipated value.
- 5. Click **AutoCal...(F4)** or press **F4**. The Analog Input Calibration Wizard runs.

Figure 3-30.	The Analog Input Calibration Wizard
	😹 Analog Input Calibration Wizard 🛛 🔀
	AnalogInput 1 Calibration Step 1 of 4
	Welcome to the Analog Input Calibration Wizard. This Wizard will guide you through the steps to calibrate the Analog Input.
	Click Next to continue.
	< <u>Back</u> Next > Cancel

6. Click **Next**. Step 2 of the *Analog Input Calibration Wizard* displays.

Figure 3-31. Step 2 of the Analog Input Calibration WIZARD

on Wizard
n
og Inputto Zero Scale Value. Click Next to

7. Click Next. Step 3 of the Analog Input Calibration Wizard displays.

Figure 3-32.	Step 3 of the Analog Input Calibration Wizard	
	🕷 Analog Input Calibration Wizard	
	Analog Input 1 Calibration Step 3 of 4	
	Set the Analog Input to Full Scale Value. Click Nextto continue.	
	<u> </u>	

8. Click Next. Step 4 of the Analog Input Calibration Wizard displays.

👹 Analog Input Calibration \	Vizard		
Analog Input 1 Calibration Step 4 of 4			
		or 1 E 11	
Analog Input Ca close this w izard	libration is complete L	. Click Finish	to

Figure 3-33. Step 4 of the Analog Input Calibration Wizard

9. Click **Finish**. The calibration is complete.

3.7 Managing your gas chromatograph's analog outputs

With MON 20/20 you can control them in the following ways:

- Assign identifying labels.
- Assign scale ranges.
- Calibrate analog outputs for zero and full scale values.

Note

```
This window contains a hidden column labelled Physical Name. For more information about this column and how to display it, see "Viewing the Physical Name column" on page 1-38.
```

3.7.1 Renaming an analog output

Give each analog output a descriptive label to avoid confusing one unit for another. To assign an identifying label, do the following:

10. Select **Analog Outputs...** from the **Hardware** menu. The *Analog Outputs* window displays.

	Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Curre
						MA	MA	MA	
Analog Output 1	Variable			0	100	4		4.00	
Analog Output 2	Variable			0	100	4	20		
Analog Output 3	Variable			0	100	4	20		
Analog Output 4	Variable			0	100	4		4.00	
Analog Output 5	Variable			0	100	4		4.00	
Analog Output 6	Variable			0	100	4	20	4.00	

Figure 3-34. The Analog Outputs window

11. Double-click on the appropriate row under the *Label* column for the analog output that you want to rename.

Note

The analog output devices are labelled **Analog Output 1** - **Analog Output** N by default, where N equals the total number of analog outputs available to the GC.

12. Type in a new descriptive name for the analog output.

13. Click **OK**.

3.7.2 Setting a analog output's operational mode

An analog output has two operational modes: Variable and Fixed.

- Setting the switch to **Variable** means that the analog output will be proportional to the variable selected in from the *Variables* column.
- Setting the switch to **Fixed** means that the analog output will be set to the value that is entered in the appropriate row under the *Fixed Value* column.

To set an analog output's operational mode, do the following:

1. Select **Analog Output...** from the **Hardware** menu. The *Analog Output* window displays.

Figure 3-35. The Analog Outputs window

		Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Current
							MA	MA	MA	
Ana	alog Output 1	Variable			0	100	4		4.00	
	alog Output 2	Variable			0	100	4		4.00	
	alog Output 3	Variable			0	100	4		4.00	
	alog Output 4	Variable			0	100	4		4.00	
	alog Output 5	Variable			0	100	4		4.00	
Ana	alog Output 6	Variable			0	100	4	20	4.00	

- 2. Select the desired mode from the drop-down menu under the *Switch* cloumn for the analog output.
- 3. To save the changes and leave the window open so that you can monitor the analog output, click **Save**. To save the changes and close the window, click **OK**. The current value of the analog output displays in the *Cur Val* column, and is updated in real time.

3.7.3 Setting the scale values for an analog output device

To set the zero scale and full scale, which are used when converting the analog output value, do the following:

1. Select Analog Output... from the Hardware menu. The Analog Output window displays.

3 Analog Output 3 Variable 0 100 4 20 4.00 4 Analog Output 4 Variable 0 100 4 20 4.00 5 Analog Output 5 Variable 0 100 4 20 4.00		Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Curren
2 Analog Output 2 Variable 0 100 4 20 4.00 3 Analog Output 3 Variable 0 100 4 20 4.00 4 Analog Output 4 Variable 0 100 4 20 4.00 5 Analog Output 5 Variable 0 100 4 20 4.00							MA	MA	MA	
3 Analog Output 3 Variable 0 100 4 20 4.00 4 Analog Output 4 Variable 0 100 4 20 4.00 5 Analog Output 5 Variable 0 100 4 20 4.00	Analog Output 1	Variable			0		4			
4 Analog Output 4 Variable 0 100 4 20 4.00 5 Analog Output 5 Variable 0 100 4 20 4.00	Analog Output 2	Variable			0	100	4	20	4.00	
5 Analog Dutput 5 Variable 0 100 4 20 4,00	Analog Output 3	Variable			0		4	20	4.00	
	Analog Output 4	Variable			0	100	4	20	4.00	
S Analog Output 6 Variable 0 100 4 20 4.00	Analog Output 5	Variable			0	100	4	20	4.00	
	Analog Output 6	Variable			0	100	4	20	4.00	

Figure 3-36. The Analog Outputs window

- 2. Click on appropriate row under the *Zero Scale* column and enter a zero scale value.
- 3. Click on appropriate row under the *Full Scale* column and enter a full scale value.
- 4. To save the changes and leave the window open so that you can monitor the analog input's progress, click **Save**. To save the changes and close the window, click **OK**.

3.7.4 Mapping a system variable to an analog output

To select the system variable on which to base the signal level of the analog output, do the following:

1. Select **Analog Output...** from the **Hardware** menu. The *Analog Output* window displays.

	Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Curre
						MA	MA	MA	
Analog Output 1	Variable			0	100	4	20	4.00	
Analog Output 2	Variable			0	100	4	20	4.00	
Analog Output 3	Variable			0	100	4	20	4.00	
Analog Output 4	Variable			0	100	4	20	4.00	
Analog Output 5	Variable			0	100	4	20	4.00	
Analog Output 6	Variable			0	100	4	20	4.00	

Figure 3-37. The Analog Outputs window

User Manual 3-9000-745

2. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

	Label	Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Currer
							MA	MA	MA	
	Analog Output 1	Variable	N	/	0	100	4	20	4.00	
	Analog Output 2	Variable	🖻 Analysis Stream		0	100	4		4.00	
	Analog Output 3	Variable	🗷 1 - Stream 1		0	100	4		4.00	
	Analog Output 4	Variable	🖬 Avg Molecular Weight		0	100	4		4.00	
	Analog Output 5	Variable	[CANCEL]		0	100	4		4.00	
	Analog Output 6	Variable	[DONE]		0	100	4	20	4.00	
•										

Figure 3-38. The Analog Outputs window with Variable drop-down menu

3. To save the changes and leave the window open so that you can monitor the analog output's progress, click **Save**. To save the changes and close the window, click **OK**.

3.7.5 Monitoring the status of an analog output

To check an analog output device's status, select **Analog Output...** from the **Hardware** menu.

	Switch	Variable	Fixed Value	Zero Scale	Full Scale		Full Adj		Curren
						MA	MA	MA	
Analog Output 1	Variable			0	100	4		4.00	
Analog Output 2	Variable			0	100	4		4.00	
Analog Output 3	Variable			0	100	4		4.00	
Analog Output 4	Variable			0	100	4		4.00	
Analog Output 5	Variable			0	100	4		4.00	
Analog Output 6	Variable			0	100	4	20	4.00	

Figure 3-39.	The Analog	Outputs	window
--------------	------------	---------	--------

The operational status of each analog output displays under the *Status* column. There are three possible status readings, and their meanings are as follows:

ОК	The analog output device is installed and is working correctly.
Not Installed	The analog output device is not installed.
Error	The Heater/Solenoid board is installed but the GC cannot communicate with it.

This window also displays other types of data, such as the following:

- **mA** The amount of current being generated in milliamperes.
- Cur Val The current scaled value of the analog output signal.

3.7.6 Calibrating an analog output

To automatically calibrate an analog output, do the following:

1. Select **Analog Output...** from the **Hardware** menu. The *Analog Outputs* window displays.

Figure 3-40.	The Analog	Outputs window
--------------	------------	----------------

		Switch	Variable	Fixed Value	Zero Scale	Full Scale	Zero Adj	Full Adj		Curren
							MA	MA	MA	
1	Analog Output 1	Variable			0	100	4		4.00	
2	Analog Output 2	Variable			0	100	4	20	4.00	
3	Analog Output 3	Variable			0	100	4	20	4.00	
4	Analog Output 4	Variable			0	100	4	20	4.00	
5	Analog Output 5	Variable			0	100	4	20	4.00	
6	Analog Output 6	Variable			0	100	4	20	4.00	

2. Click on the analog output that you want to calibrate.

3. Click AutoCal...(F4) or press F4. The Analog Output Calibration Wizard runs.

Figure 3-41. The Analog Output Calibration Wizard

👹 Analog Oı	ıtput Calibration Wizard 🛛 🛛 🔀
Analog O Step 1	utput 1 Calibration of 4
	Welcome to the Analog Output Calibration Wizard. This Wizard will guide you through the steps to calibrate the Analog Output.
	Select the unit you'll use for Analog Output Calibration:
	Click Next to continue.
	< <u>B</u> ack <u>N</u> ext > Cancel

4. Select the check box for the unit of measure you want to use for the calibration and then click **Next**. Step 2 of the *Analog Output Calibration Wizard* displays.

Analog) Output 1 Calibration
Ste	p 2 of 4
	The Analog Output is set to 4mA.
	Record the current device value, in mA
	Click Next to continue.

Figure 3-42. Step 2 of the Analog Output Calibration Wizard

5. Enter the Zero Scale Adjustment value and then click Next. If the value entered is within tolerance, it is accepted and Step 3 of the Analog Output Calibration Wizard displays. If the value is not within

tolerance, an error icon (**()**) appears beside the field. Tolerance is set to ±1mA of the analog output's default zero adjustment setting, which is 4mA. Enter a different value and try again.

🕺 Analog (Output Calibration Wizard
Analog (Dutput 1 Calibration
Step	3 of 4
	The Analog Output is set to 20mA.
	Record the current device value, in mA
	Click Next to continue.

Figure 3-43. Step 3 of the Analog Output Calibration Wizard

6. Enter the Full Scale Adjustment value and then click Next. If the value entered is within tolerance, it is accepted and Step 4 of the Analog Output Calibration Wizard displays. If the value is not within

tolerance, an error icon (**()**) appears beside the field. Tolerance is set to ±1mA of the analog output's default full adjustment setting, which is 20mA. Enter a different value and try again.

Figure 3-44. Step 4 of the Analog Output Calibration Wizard

👹 Analog (utput Calibration Wiza	rd	
-	Dutput 1 Calibration 4 of 4		
	Old Zero Adjustment Old Full Adjustment New Zero Adjustment New Full Adjustment	4 20 4 20	
	Analog Output Calibrati close this wizard.	ion is complete. Click F inis h t	D
	<	<u>B</u> ack <u>F</u> inish	Cancel

7. Click **Finish**. The calibration is complete.

3.8 Reviewing the Hardware Inventory List

MON 20/20 can compile an inventory table of all hardware that is installed on the GC. To view this table, select **Installed Hardware...** from the **Hardware** menu.

Figure 3-45. The Installed Hardware window

1	IO Name	IO Function	Slot Number	Revision	Device Description	
	PREAMP_STR:SLOT_1:PREAMP_S		Slot 1	3	Preamp (Streaming)	
	PREAMP_STR:SLOT_1:PREAMP_S		Slot 1	3	Preamp (Streaming)	
	PREAMP_CFG:SLOT_1:PREAMP_C		Slot 1	3	Preamp (Configuration)	
4	PREAMP_CFG:SLOT_1:PREAMP_C		Slot 1	3	Preamp (Configuration)	
	DIAGNOSTIC:SLOT_1:DIAGNOSTIC	Diagnostic	Slot 1	3	Preamp Diagnostic	
	HTR_CTRL:SLOT_2:HTR_CTRL_1		Slot 2	2	Heater Control	
	HTR_CTRL:SLOT_2:HTR_CTRL_2		Slot 2	2	Heater Control	
	HTR_CTRL:SLOT_2:HTR_CTRL_3		Slot 2	2	Heater Control	
	HTR_CTRL:SLOT_2:HTR_CTRL_4		Slot 2	2	Heater Control	
	SOL:SLOT_2:SOL_1	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_2	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_3	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_4	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_5	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_6	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_7	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_8	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_9	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_10	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_11	Solenoid	Slot 2	2	Solenoid Control	
	SOL:SLOT_2:SOL_12	Solenoid	Slot 2	2	Solenoid Control	
	RTD:SLOT_2:RTD_1	RTD	Slot 2	2	RTD	
	RTD:SLOT_2:RTD_2	RTD	Slot 2	2	RTD	
	RTD:SLOT_2:RTD_3	RTD	Slot 2	2	RTD	
	RTD:SLOT_2:RTD_4	RTD	Slot 2	2	RTD	
	RTD:SLOT_2:RTD_5	RTD	Slot 2	2	RTD	
	DIAGNOSTIC:SLOT_2:DIAGNOSTIC		Slot 2	2	HtrSol Diagnostic	
	GRAPHICAL_LOI:LOI_SLOT:GRAPH	Graphical LOI	LOI	0	Graphical LOI	
	SERIAL:SLOT_BASE_IO:SERIAL_1	Serial Com Port	Base IO	3	Serial IO	
	SERIAL:SLOT_BASE_IO:SERIAL_2	Serial Com Port	Base IO	3	Serial IO	
	SERIAL:SLOT_BASE_IO:SERIAL_3	Serial Com Port	Base IO	3	Serial IO	
	DIGI_IN:SLOT_BASE_IO:DIGI_IN_1		Base IO	3	Digital Input	
	DIGI_IN:SLOT_BASE_IO:DIGI_IN_2		Base IO	3	Digital Input	
	DIGI_IN:SLOT_BASE_IO:DIGI_IN_3		Base IO	3	Digital Input	
	DIGI_IN:SLOT_BASE_IO:DIGI_IN_4		Base IO	3	Digital Input	
	DIGI_IN:SLOT_BASE_IO:DIGI_IN_5		Base IO	3	Digital Input	
	DIGI_OUT:SLOT_BASE_I0:DIGI_OU	. Digital Output	Base IO	3	Digital Output	5
	DICLOUT CLOT DACE IO DICLOU				Close	

The type of hardware installed is listed under the *Device Description* column. The other types of information available on this screen are the following:

- **IO Function** Describes the function of the device.
- **Slot Number** Describes the location of the device on the GC. The slot number refers to the card cage assembly, which is located in the GC's lower enclosure and which has eight slots:
 - Slot 1
 - Slot 2
 - Slot 3
 - Slot 4
 - Base IO
 - ROC Expansion 1
 - ROC Expansion 2
 - CPU.

٠

Revision - The revision number of the backplane.

This page is intentionally left blank.

Section 4: Using the Application functions

System	
Component Data	F6
Timed Events	F5
Validation Data	
Calculations	•
Limit Alarms	
System Alarms	
Streams	
Stream Sequence	
Communication	
Ethernet Ports	
LOI Status Variables	

Many of the variables that a gas chromatograph uses during an analysis run—such as timed events, stream sequence, and calculation types—can be easily managed through MON 20/20.

This chapter explains how to do the following:

- View and edit general information about the GC to which MON 20/20 is connected, such as name, model, and default stream sequence.
- View and edit component data, validation data, and timed event tables.
- View and change control, average, and userdefined calculations.
- View and edit limit alarm data.
- View and change stream data.
- View and edit the stream sequence.
- View and edit communication and ethernet port data.
- View and map LOI status variables.
- View and map the Foundation Fieldbus Process Variables.

4.1 Managing the system

Use this function to select the default GC stream sequence and to set or edit system-wide variables such as the GC's name, serial number, and system description. See Table 5-1 for a list of the items that are available on the *System* window, along with their related functions.

To view the *System* window, select **System...** from the **Application** menu.

Figure 4-1. The	System window
-----------------	---------------

Analyzer Name		
GC Model	GC700XA	
System Description		
Firmware Version	2.0, 2010/09/20	
GC Serial No	11	
Company Name		
GC Location		
Is Multi User Write Enabled?		
Maintenance Mode		
Sync GC with FFB time		
Standard Component Table Version fo		
Standard Component Table Version fo	r ISO 6976:1995(E)	
Date Format	MM\$DD\$YYYYY	
Date Field Separator	1	
Time Format	HH:MM:SS	
Time Notation	12 Hr	
CGM FCAL Archive	Keep Last FCAL Per Day	
CGM FVAL Archive	Keep Last FVAL Per Day	
Show Advanced System Variables		
Site Id	0	
GC Mode	1-Strm 1-Det 1-Mthd	
Default Stream Sequence	Sequence 1	

Field Name	Description
Analyzer Name	Defines the GC name that appears in the Status Bar on the main window when MON 20/20 is connected to the GC. Can contain up to 12 characters.
GC Model	The model number of the GC to which MON 20/20 is connected.
System Description	A field to record miscellaneous reference information to further identify the currently connected system. Can contain up to 28 characters.
Firmware Version	Revision level of firmware of the GC to which MON 20/20 is connected.
GC Serial No	Serial number of the GC to which MON 20/20 is connected.
Company Name	The name of the company that operates the GC.
GC Location	The physical location of the GC to which MON 20/20 is connected.
Is Multi User Write Enabled?	Determines whether all supervisor-level users that connect to the GC have write access, or just the first supervisor-level user to connect. Options are True and False .
Maintenance Mode	Switches the GC to maintenance mode and triggers an alarm that the GC is down for maintenance.
Sync GC with FFB time	Sets the GC's time to match the Foundation Fieldbus' time.
Standard Component Table Version for GPA	Indicates which version of the GPA's standard component table is being used.
Standard Component Table Version for ISO	Indicates which version of the ISO's standard component table is being used.
Date Format	Defines how the date will be displayed. The options are: • MM\$\$DD\$\$YYYY • MM\$DD\$YY • DD\$MM\$YYYY • DD\$MM\$YYY • YYYY\$MM\$DD • YY\$MM\$DD \$ is the Date Field Separator.
Date Field Separator	Defines the text symbol that will be used as the separator when displaying the date. The options are: • / • -

Table 4-1. List of fields from System window

Field Name	Description
Time Format	Defines how the time will be displayed. The options are: • HH:MM:SS • HH:MM
Time Notation	Defines the cycle of time to use when displaying the time. The options are: • 12 Hr • 24 Hr
CGM FCAL Archive	 Sets the storage behavior for final calibration chromatograms. The options are: Keep Last FCAL Per Day - Saves only the last final calibration chromatogram of the day. Keep All FCAL Per Day - Saves all final calibration chromatograms.
CGM FVAL Archive	 Sets the storage behavior for final validation chromatograms. The options are: Keep Last FVAL Per Day - Saves only the last final validation chromatogram of the day. Keep All FVAL Per Day - Saves all final validation chromatograms.
Show Advanced System Variables	Determines whether advanced system variables will be displayed along with basic system variables. See "Basic and advanced system variables" on page D-1 for more information.
Site Id	Holds customer-defined site identification information.
GC Mode	Allows you to select an operating mode for the GC. See "Operating modes for MON 20/20" on page 1-38 for more information.
Default Stream Sequence	Sets the default sequence to be used by the indicated detector during auto-sequencing. To create a new stream sequence or to edit an already-created sequence, click Stream Sequence See "Creating a stream sequence for a detector" on page 4-78 for more information.

Table 4-1. List of fields from System window

After making changes, click **Save** to save the changes without closing the window. To save the changes and close the window, click **OK**.

4.2 Managing Component Data Tables

Figure 4-2. The Component Data Tables window

MON 20/20 allows you to view and edit the component data tables. The number of available component data tables depends on the GC unit configuration.

To assign a component data table to a stream, see "Assigning a valve to a stream and setting the relationship between the stream's open state to the valve's On/Off state" on page 4-76.

1. To view a component data table, select **Component Data...** from the **Application** menu. The *Component Data Tables* window appears, displaying a list of available component data tables.

Component Data Tables

Note

Other ways of accessing the component data tables are by pressing F6 or by clicking

💠 from the Toolbar.

2. Select the table that you want to view. The selected component data table displays.

		Usr /St Det d #	Ret Time					Anly Meth	RT RT Secs Upd Dev Meth	Fact			Gross Dry BTU per Ib			
			SEC						SEC	PCT						
1		🛩 Usr 1	49.6	2.227641e+008			Mole%		4.0 Cal	10	2521.92	2320.36	21654	93.934	86.42	
	i-Butane	Usr 1	64.0	2.585876e+008			Mole%		4.0 Cal	10	3259.42	3006.94	21232	121.4	112	
	n-Butane	Usr 1	73.5	2.624707e+008			Mole%		4.0 Cal	10	3269.85	3017.97	21300	121.79	112.4	
	Neopentane	Usr 1	79.0		Single-Level		Mole%		3.0 Cal	10	3993.9	3691.4	20959	148.76	137.49	
	i-Pentane	Usr 1	108.5	2.894953e+008				Area	6.0 Cal	10	4010.16	3707.56	21044	149.36	138.1	
	n-Pentane	Usr 1	123.1	3.016723e+008			Mole%		6.0 Cal	10	4017.97	3715.58	21085	149.65	138.4	
	Nitrogen	Usr 1	147.9	1.361596e+008			Mole%		1.5 Cal	10	0	0	0	0	0	
	Methane	Std 1	152.1	1.067454e+008		89.6288			2.0 Cal	10	1012.34	911.5	23892	37.706	33.95	
	Carbon Dioxide	Usr 1	181.4	1.658164e+008				Area	6.0 Cal	10	0	0	0	0	0	
	Ethane	Usr 1	207.2	1.81502e+008			Mole%		6.0 Cal	10	1773.79	1622.75	22334	66.066	60.43	
	n-Nonane	Usr 2	38.1	1.933335e+009			Mole%		3.0 Cal	10	7012.49	6508.02	20701	261.19	242.4	
	n-Hexane	Usr 2	108.0	1.639368e+009			Mole%		3.0 Cal	10	4766.9	4414.19	20943	177.55	164.39	
	n-Heptane	Usr 2	164.6	1.921771e+009			Mole%		3.0 Cal	10	5515.33	5111.8	20839	205.42	190.39	
	n-Octane	Usr 2	280.1	2.042025e+009	Single-Level	0.0209	Mole%	Area	3.0 Cal	10	6263.46	5809.41	20760	233.29	216.38	

Figure 4-3. The selected component data table

Note

To see a different table, select it from the Choose table drown-down list.

Note

To sort the list of components by detector, and then by retention time, click Sort RT.

4.2.1 Editing a Component Data Table

Note

Table cells with a white background are editable; table cells with a turqoise background are not editable.

To edit a cell, do the following:

- 1. Click on the cell. Depending on the cell type, you will either be required to select a value from a drop-down list, or you will be able to type in the value directly.
- 2. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

The following table lists all of the editable parameters that are available on the component data table. The standard values for these parameters were taken from the second editions of the Orifice Metering of Natural Gas and Other Related Hydrocarbon Fluids and the Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases.

Parameter	Description
Component	This drop-down list contains the complete catalog of available components for the selected stream.
Usr Std	 Indicates the source of the component: Usr - The component was edited or defined by the user. Std - The component was selected from the standard list of components and no changes were made to its standard data.
Det #	The component's detector number.
Ret Time	Time in seconds before the apex of the component's peak will appear. The rentention time can be set from 0 to 3600 seconds.
	CAUTION : Ensure that the component retention times do not exceed the analysis time, as defined by the Timed Events table. MON 20/20 does not automatically prevent the user from defining excessive component retention times.
Resp Fact	A component's response factor is equal to the raw data of the component's peak divided by the component's concentration.
	The maximum value is 1.0E+38.
Calib Type	 MON 20/20 can perform four types of calibrations: Single-Level - Uses the standard calibration in which the response factor is needed to determine the mole percentage during the calibration. Fixed - During the calibration, the response factor is not updated. Relative - Calibration in which a reference component is used to compute the mole percentage. Multi-Level - Uses a polynomial equation to compute the mole percentage during the calibration. Values must be entered in the Mult-level Calib 'a', Mult-level Calib 'b', Mult-level Calib 'c', and Mult-level Calib 'd' cells. See "Multi-level calibration" on page B-13 for more information.
Calib Conc	The amount, in mole percent, parts per million (ppm) or parts per billion (ppb), of the component that is present in the calibration gas.
Unit	Indicates the unit of measure used when calculating and displaying the component's calibration concentration. Options are Mole% , ppm and ppb .

Parameter	Description
Anly Meth	 Used to determine the component's raw data value. Options are: Area - Raw data value is proportional to the area under the peak. Height - Raw data value is proportional to the height of the peak. Fixed - Raw data value is proportional to a value that is set by the user. Analog Input - Data signal comes from an external analyzer.
RT Secs Dev	The maximum acceptable deviation time, in seconds, of the new retention time from the current retention time.
RT Upd Meth	 Determines when the retention time will be updated. Options are: Cal - Updates the retention time only during the final calibration run. Anly - Updates after each analysis.
Resp Fact %	The maximum acceptable percent of deviation between the new response factor and the current response factor.
Gross Dry BTU	Gross energy content per cubic foot (ft ³), assuming no water is present.
Net Dry BTU	Net energy content per cubic foot, assuming no water is present.
Gross Dry BTU per lb	Gross energy content per pound, assuming no water is present.
HV Sup MJ/m ³	Gross heating value in megajoules per cubic meter (MJ/m ³).
HV Inf MJ/m ³	Net heating value in megajoules per cubic meter (MJ/m ³).
HV Sup MJ/kg	Gross heating value in megajoules per kilogram (MJ/kg).
HV Inf MJ/kg	Net heating value in megajoules per kilogram (MJ/kg).
Sum Factor Pri	Used to calculate the compressibility factor.
Sum Factor Sec	Used to calculate the compressibility factor.
CV Superior Pri	Gross caloric value per kilojoule (kJ).
CV Inferior Pri	Net caloric value per kilojoule (kJ).
CV Superior Sec	Gross caloric value per kilojoule (kJ).
CV Inferior Sec	Net caloric value per kilojoule (kJ).
Gals/1000 SCF	Liquid equivalent volume in gallons/1000ft ³ .
Reid Vapor	The component's vapor pressure in pounds per square inch (psia) at 100.0°F
LBs/Gallon	Liquid density for the component at base conditions.
Rel Dens Gas	The relative density of the gas phase for the component at base conditions.
Rel Dens Liquid	The relative density of the liquid phase for the component at base conditions.
Molecular Weight	The molecular weight of the component, which is used to calculate the weight percent of each component in the sample.
Carbon Weight	The molecular weight of the carbon atoms in the component.

MON20/20 Software for Gas Chromatographs SEPTEMBER 2010

Parameter	Description
AGA 8 Component	The name of the component according to the American Gas Association, which is used in the AGA 8 compressibility calculation.
Ref Comp	The component not found in the calibration gas but in the sample gas for indirect calibration. If 'none', normal (direct) calibration is used.
	Not editable unless the calibration type is set to Relative .
Rel Resp Fact	A fixed multiple of the response factor of the component found in the sample gas for indirect calibration.
	Not editable unless the calibration type is set to Relative .
Rel Dens Liquid 15C	The relative density in kilograms per cubic meter (kg/m ³) of the liquid phase for the component at 15°C.
Molar Mass	The mass of one mole of the component.
Mult-level Calib 'a'	Third-order polynomial coefficient for multi-level calibrations.
	Not editable unless the calibration type is set to Multi-Level .
Mult-level Calib 'b'	Second-order polynomial coefficient for multi-level calibrations.
	Not editable unless the calibration type is set to Multi-Level .
Mult-level Calib 'c'	First-order polynomial coefficient for multi-level calibrations.
	Not editable unless the calibration type is set to Multi-Level .
Mult-level Calib 'd'	Zero-order polynomial coefficient for multi-level calibrations.
	Not editable unless the calibration type is set to Multi-Level .
Component Code	An index number that corresponds to the standard component numbers taken from the American Gas Association. Up to 20 components can be defined per data table.

4.2.2 Adding a component to a Component Data Table

To add a component to a component data table, do the following:

1. Select **Component Data...** from the **Application** menu. The *Component Data Tables* window appears, displaying a list of available component data tables.

Componen	t Data Tables	Þ
Table #	Associated Streams	
1	1	
2	2	
3		
4		
		-

Note

Other ways of accessing the component data tables are by pressing ${f F6}$ or by clicking

from the Toolbar.

2. Select the table that you want to view. The selected component data table displays.

	Component	Usr /St De d #	t Ret Time	Resp Factor	Calb Type	Calb Conc	Unit	Anly Meth			Gross Dry BTU	Net Dry BTU	Gross Dry BTU per lb	HV Sup MJ/m3	HV Inf MJ/m3	HV Sup
1		u	SEC						SEC	PCT						
- 10	Propane	∼ Usr 1	49	6 2.227641e+00	Single-Level	0.9961	Mole%	Área	4.0 Cal	10	2521.92	2320.36	21654	93,934	86.42	
2	i-Butane	Usr 1	64			0.2968		Area	4.0 Cal	10	3259.42	3006.94	21232	121.4	112	
	n-Butane	Usr 1	73				Mole%		4.0 Cal	10		3017.97	21300	121.79	112.4	
	Neopentane	Usr 1	79	0 1) Single-Level	0	Mole%	Area	3.0 Cal	10	3993.9	3691.4	20959	148.76	137.49	
	i-Pentane	Usr 1	108		3 Single-Level	0.0991	Mole%	Area	6.0 Cal	10	4010.16	3707.56	21044	149.36	138.1	
	n-Pentane	Usr 1	123		3 Single-Level	0.0969	Mole%	Area	6.0 Cal	10	4017.97	3715.58	21085	149.65	138.4	
	Nitrogen	Usr 1	147	9 1.361596e+00	3 Single-Level	2.495	Mole%	Area	1.5 Cal	10	0	0	0	0	0	
	Methane	Std 1	152	1 1.067454e+00	3 Single-Level	89.6288	Mole%	Area	2.0 Cal	10	1012.34	911.5	23892	37.706	33.95	
	Carbon Dioxide	Usr 1	181	4 1.658164e+00	8 Single-Level	0.9954	Mole%	Area	6.0 Cal	10	0	0	0	0	0	
	Ethane	Usr 1	207	2 1.81502e+00	8 Single-Level	4.974	Mole%	Area	6.0 Cal	10	1773.79	1622.75	22334	66.066	60.43	
	n-Nonane	Usr 2	38	1 1.933335e+00	3 Single-Level	0.0116	Mole%	Area	3.0 Cal	10	7012.49	6508.02	20701	261.19	242.4	
	n-Hexane	Usr 2	108	0 1.639368e+00	B Single-Level	0.06	Mole%	Area	3.0 Cal	10	4766.9	4414.19	20943	177.55	164.39	
	n-Heptane	Usr 2	164	6 1.921771e+00	3 Single-Level	0.0203	Mole%	Area	3.0 Cal	10	5515.33	5111.8	20839	205.42	190.39	
	n-Octane	Usr 2	280	1 2.042025e+00	3 Single-Level	0.0209	Mole%	Area	3.0 Cal	10	6263.46	5809.41	20760	233.29	216.38	
	1000000	W-112														•
													Delete	1	nsert After 🛛 🖵	

Figure 4-5. The selected component data table

Note

To sort the list of components by detector, and then by retention time, click **Sort RT**.

3. If you want to add the component *above* the currently selected component, click **Insert before**. If you want to add the component *below* the currently selected component, select **Insert after** from the Insert arrow.

4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.2.3 Removing a component from a Component Data Table

To remove a component from a component data table, do the following:

1. Select **Component Data...** from the **Application** menu. The *Component Data Tables* window appears, displaying a list of available component data tables.

Table # Associated Streams 4 1 1 2 2	Compo	nent Data T	ables	Þ
1 1	Tabl	e#	Associated Streams	
2 2	1	1		
	2	2		
3	3			
4	4			

Note

Other ways of accessing the component data tables are by pressing ${f F6}$ or by clicking

from the Toolbar.

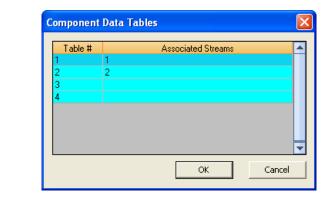
2. Select the table that you want to view. The selected component data table displays.

-	5 N	Usr /St	Det	Ret	Resp Factor	Calib Type	Calb Conc	Unit	Anly Meth	RT RT	Resp	Gross Dry BTU	Net Dry BTU	Gross Dry BTU	HV Sup MJ/m3	HV Inf MJ/m3	HV Su
		d				Calib Type	Callo Conc		Any Meth	Secs Upd Dev Meth				per Íb	HV SUP MJ/m3	HV INFMJ/M3	HV SU
				SEC						SEC	PCT						
		V Usr	1	49.6	2.227641e+008			Mole%		4.0 Cal	10	2521.92	2320.36	21654	93.934	86.42	
	i-Butane	Usr		64.0	2.585876e+008			8 Mole%		4.0 Cal	10	3259.42	3006.94	21232	121.4	112	
	n-Butane	Usr		73.5	2.624707e+008			Mole%		4.0 Cal	10	3269.85	3017.97	21300	121.79	112.4	
	Neopentane	Usr	1	79.0		Single-Level) Mole%		3.0 Cal	10	3993.9	3691.4	20959	148.76	137.49	
	i-Pentane	Usr		108.5	2.894953e+008					6.0 Cal	10	4010.16	3707.56	21044	149.36	138.1	
	n-Pentane	Usr	1	123.1	3.016723e+008	Single-Level	0.0989	B Mole%	Area	6.0 Cal	10	4017.97	3715.58	21085	149.65	138.4	
	Nitrogen	Usr	1	147.9	1.361596e+008	Single-Level	2.495	5 Mole%	Area	1.5 Cal	10	0	0	0	0	0	
	Methane	Std	1	152.1	1.067454e+008	Single-Level	89.6288	8 Mole%	Area	2.0 Cal	10	1012.34	911.5	23892	37.706	33.95	
	Carbon Dioxide	Usr	1	181.4	1.658164e+008	Single-Level		Mole%		6.0 Cal	10	0	0	0	0	0	
		Usr		207.2	1.81502e+008	Single-Level	4.974	Mole%	Area	6.0 Cal	10	1773.79	1622.75	22334	66.066	60.43	
	n-Nonane	Usr		38.1	1.933335e+009	Single-Level	0.0116	6 Mole%	Area	3.0 Cal	10	7012.49	6508.02	20701	261.19	242.4	
	n-Hexane	Usr	2	108.0	1.639368e+009	Single-Level	0.06	6 Mole%	Area	3.0 Cal	10	4766.9	4414.19	20943	177.55	164.39	
	n-Heptane	Usr		164.6	1.921771e+009	Single-Level	0.0203	8 Mole%	Area	3.0 Cal	10	5515.33	5111.8	20839	205.42	190.39	
	n-Octane	Usr	2	280.1	2.042025e+009	Single-Level	0.0209	Mole%	Area	3.0 Cal	10	6263.46	5809.41	20760	233.29	216.38	

Figure 4-7. The selected component data table

Note

To sort the list of components by detector, and then by retention time, click **Sort RT**.


- 3. Select the component that you want to remove.
- 4. Click **Delete**.
- 5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.2.4 Viewing the standard values for a component

If a component's values have been changed by the user, it is still possible to view the standard values for that particular component. To view the standard values for a component, do the following:

1. Select **Component Data...** from the **Application** menu. The *Component Data Tables* window appears, displaying a list of available component data tables.

Figure 4-8. The Component Data Tables window

Note

Other ways of accessing the component data tables are by pressing ${f F6}$ or by clicking

from the Toolbar.

2. Select the table that you want to view. The selected component data table displays.

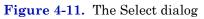
Figure 4-9.	The selected component data table
-------------	-----------------------------------

		Usr /St Det d #	Ret Time					Anly Meth	RT R Secs Up Dev Me				Gross Dry BTU per lb			
			SEC			1			SEC	PCT						
1		🗸 Usr 1	49.6	2.227641e+008			Mole%		4.0 Ca			2320.36	21654		86.42	
	i-Butane	Usr 1	64.0	2.585876e+008				Area	4.0 Ca			3006.94	21232		112	
	n-Butane	Usr 1	73.5	2.624707e+008					4.0 Ca			3017.97	21300		112.4	
	Neopentane	Usr 1	79.0		Single-Level		Mole%		3.0 Ca			3691.4	20959		137.49	
	i-Pentane	Usr 1	108.5	2.894953e+008					6.0 Ca			3707.56	21044		138.1	
	n-Pentane	Usr 1	123.1	3.016723e+008				Area	6.0 Ca			3715.58	21085		138.4	
	Nitrogen	Usr 1	147.9	1.361596e+008	Single-Level				1.5 Ca		0	0	0		0	
	Methane	Std 1	152.1	1.067454e+008	Single-Level	89.6288		Area	2.0 Ca		1012.34	911.5	23892	37.706	33.95	
	Carbon Dioxide	Usr 1	181.4	1.658164e+008	Single-Level	0.9954	Mole%	Area	6.0 Ca	1 10	0	0	0		0	
	Ethane	Usr 1	207.2	1.81502e+008	Single-Level	4.974	Mole%	Area	6.0 Ca	i 10	1773.79	1622.75	22334	66.066	60.43	
	n-Nonane	Usr 2	38.1	1.933335e+009	Single-Level	0.0116	Mole%	Area	3.0 Ca	1 10	7012.49	6508.02	20701	261.19	242.4	
	n-Hexane	Usr 2	108.0	1.639368e+009	Single-Level	0.06	Mole%	Area	3.0 Ca	i 10	4766.9	4414.19	20943	177.55	164.39	
	n-Heptane	Usr 2	164.6	1.921771e+009	Single-Level	0.0203	Mole%	Area	3.0 Ca	i 10	5515.33	5111.8	20839	205.42	190.39	
14	n-Octane	Usr 2	280.1	2.042025e+009	Single-Level	0.0209	Mole%	Area	3.0 Ca	i 10	6263.46	5809.41	20760	233.29	216.38	
(100	N	(S).			1			32 23							

Note

To sort the list of components by detector, and then by retention time, click Sort RT.

3. Click **Std Values (F3)**. The *Standard Component Values* window displays.


ACETYLENE 1476,900024 0 0 2 AIR 0 0 0 3 ARGON 0 0 0 0 4 AMMONIA 435,39994 0 0 0 5 BENZENE 3750.5 0 0 0 6 BUTANES 3264,73999 0 0 0 7 BUTENE-1 3087 0 0 0 8 BUTENES 3077,399902 0 0 0 9 1,2-8UTADIENE 2946,699951 0 0 0 10 1,3-BUTADIENE 2886,600098 0 0 0 12 C4+ 3269,949951 0 0 0	0 0 0 0 0 0 0 0 359: 0 0 3599 0 0 3012 0 0 2885 0 0 2875
ARGON O O O 4 AMMONIA 435.399944 0 0 5 BENZENE 3750.5 0 0 6 BUTANES 3264.73999 0 0 7 BUTENE-1 3087 0 0 8 BUTENES 3077.399902 0 0 9 1,2-BUTADIENE 2946.699951 0 0 10 1,3-BUTADIENE 2886.600098 0 0 11 C3+ 252.02002 0 0	0 0 0 0 0 0 359: 0 0 3599 0 0 3012 0 0 2885 0 0 2875
4 AMMONIA 435.399994 0 0 0 5 BENZENE 3750.5 0 0 0 6 BUTANES 3264.73999 0 0 0 7 BUTENE-1 3087 0 0 0 8 BUTENES 3077.399902 0 0 0 9 1,2-BUTADIENE 2946.699951 0 0 0 10 1,3-BUTADIENE 2886.600098 0 0 0 11 C3+ 2522.02002 0 0 0	0 0 359 0 0 3599 0 0 3012 0 0 2885 0 0 2875
5 BENZENE 3750.5 0 0 6 BUTANES 3264.73999 0 0 7 BUTENE-1 3087 0 0 8 BUTENES 3077.399902 0 0 9 1,2-BUTADIENE 2946.699951 0 0 10 1,3-BUTADIENE 2886.600098 0 0 11 C3+ 2522.02002 0 0	0 0 3599 0 0 3012 0 0 2885 0 0 2875
6 BUTANES 3264.73999 0 0 0 7 BUTENE-1 3087 0 0 0 8 BUTENES 3077.399902 0 0 0 9 1,2-BUTADIENE 2946.699951 0 0 0 10 1,3-BUTADIENE 2886.600098 0 0 0 11 C3+ 2522.02002 0 0 0	0 0 3012 0 0 2885 0 0 2875
7 BUTENE-1 3087 0 0 8 BUTENES 3077.399902 0 0 9 1,2-BUTADIENE 2946.699951 0 0 10 1,3-BUTADIENE 2886.600098 0 0 11 C3+ 2522.02002 0 0	0 0 2885 0 0 2875
BUTENES 3077.399902 0 0 9 1,2-BUTADIENE 2946.699951 0 0 10 1,3-BUTADIENE 2886.600098 0 0 11 C3+ 2522.02002 0 0	0 2875
9 1,2-BUTADIENE 2946,699951 0 0 0 10 1,3-BUTADIENE 2886,600098 0 0 0 11 C3+ 2522,02002 0 0 0	
10 1,3-BUTADIENE 2886.600098 0 0 11 C3+ 2522.02002 0 0) 0 070E
11 C3+ 2522.02002 0 0	J U 2795
	0 2735
12 C4+ 3269.949951 0 0	0 2320
	0 3017
13 C4=1 3087 0 0	0 2885
14 C5+ 4017.969971 0 0	0 0 3715
15 C6+ 47/35/17 5288.709961 0 0	0 4900
16 C6+ 50/50/00 5141.120117 0 0	0 4762
17 C6+ GPA 2261-99 5141.109863 0 0	0 4762
10 CC, E7/20/14 E104 E40020 0 0	0 4012

4. Click **Close**.

4.2.5 Viewing raw data

To view the raw data for the displayed component data table, do the following:

1. Click **Raw Data (F4)**. The *Select* dialog displays, listing the streams that are associated with the component data table.

2. Double-click the desired stream.

The *Raw Data* window appears, listing the peak raw data from the last run of the stream represented by the component data table.

Figure 4-12. The Raw Data window

	Peak. No.	Ret Time	Peak Area	Peak Height	Det	Method	Integration Start	Integration End	Peak Width@ Half Height	Partial Peak
		SEC					SEC	SEC		
	1	49.6	55808852	562518.4	1	4	46.9	57.1	1.9	No
2	2	64.0	19757518	136768.0	1	2	59.9	69.5	2.7	No
	3	73.6	20477707	123722.6	1	3	69.5	81.8	3.1	No
	4	108.5	7719908	28680.9	1	2	100.8	116.4		No
	5	123.2	7988157	26985.3	1	3	116.4	135.1	5.6	No
	6	148.0	86818862	1174634.0	1	4	145.5	152.3	1.4	No
	7	154.4	2344153735	23950850.6	1	1	152.3	168.5	1.9	No
	8	181.8	38035541	250715.7	1	4	176.8	191.8	2.9	No
	9	208.9	218612850	1064496.7	1	1	201.6	224.4	4.0	No
0	1	108.0	0	0.0	2	500	76.0	108.0	0.0	No
	2	164.6	0	0.0	2	500	108.5	164.6	0.0	No
2	3	280.1	0	0.0	2	500	166.3	280.1	0.0	No
									Г	Close

Name	Description
Peak No	Numerical identifier for the peak, listed by the order of discovery.
Ret Time	Time, in seconds, that the component eluted.
Peak Area	The area under the peak.
Peak Height	The maximum height of the peak.
Det #	The detector associated with the peak.
Method	 Method of peak end detection. Options are: 1 (Baseline) 2 (Fused Peak) 3 (Last Fused Peak) 4 (Tangent Skim) 100 (Inhibit) 300 (Forced Integration) 500 (Summation)
Integration Start	Time, in seconds, when integration started.
Integration Stop	Time, in seconds, when integration stopped.
Peak Width Half Height	The width of the peak taken at half of the peak's height.
Is Partial Peak	If Y, then the Partial Peak value is used in the summation calculation; if N, then the Partial Peak value is not used in the summation calculation.

The following data displays for each peak:

3. Click **Close** to return to the component data table.

4.3 Managing timed events

Use this function to view and/or edit the timed events tables assigned to and used by particular gas streams. The number of available timed events depends on the GC unit configuration. The standard GC application contains four timed events tables.

Note

See "Editing Timed Events from the Time Events window" on page 2-33 for more information.

To assign a timed events table to a stream, see "Assigning a valve to a stream and setting the relationship between the stream's open state to the valve's On/Off state" on page 4-76.

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

Table #		A:	ssociated	Streams		
1	1					
2	2					
3						
4						

Figure 4-13. The Timed Events Tables selector window

Note

Other ways of accessing the timed event tables are by pressing **F5** or by clicking **"t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

	Time	d Events										
C۲	noose 1	Fable: 2 (As	ssociated Streams: 2]	l				-				
∟_\	/alve E	vents —					Integra	tion Events				
		Туре	Valve/D0 #	State				Туре	Det#	Value	Time	
	4	Valve #	4 - SSO1	On	SEC 0			Inhibit	1	On	SEC 0	
	· ·	Valve # Valve #	3 - Dual Column	On	2	-	2	Peak Width	1		0	
	_	Valve #	2-BF_2	On	5		3	Slope Sens	1		0	
	4	Strm Sw	_		11		4	Inhibit	1	Off	27.5	
		Valve #	4 - SSO1	Off	15		5	Inhibit	1	On	42.8	
		Valve #	2-BF_2	Off	21		6	Slope Sens	1		42.9	
	· ·	Valve #	3 - Dual Column	Off	43	-	7	Inhibit	1	Off	48	
	8	Valve #	3 - Dual Column	On	145		8	Inhibit Peak Width	1	On	144	
							<u>9</u> 10	Slope Sens	1		144.1	
							11	Inhibit	1	Off 24	150	
								Inhibit	1	On	177	-
							1				•	
ľ		Sort	Delete	Inse	rt Before	•		Sort	Deleti	e Inser	t Before	•
	Spectru	ım Gain Eve	ante				- Analysi	s Time				
		Det # G	iain Time SEC O		(
		Sort	Delete	Inse	rt Before	•	ļ		Save	OK	Cano	cel

Figure 4-14. The Timed Events window

Note

To sort events by time, click the appropriate **Sort** button.

3. To see a different timed events table, select it from the *Choose table* drop-down list.

4.3.1 Editing valve events

Valve-related events are grouped on the upper left side of the *Timed Events* window. To edit valve-related events, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

Figure 4-15. The Timed Events Tables selector window

Table #		Associal	ed Streams	
1	1			
2	2			
3				
4				

Note

Other ways of accessing the timed event tables are by pressing **F5** or by clicking **"t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

III T	ime	d Events										
Cho	ose 1	Table: 2 (As	ssociated Streams: 2]					•				
⊢Va	lve E	vents —					Integra	tion Events				
	4	Туре	Valve/D0 #	State				Туре	Det #	Value	Time	
	1	Valve #	4 - SSO1	On	SEC 0		1	Inhibit	1	On	SEC 0	
	· ·	Valve # Valve #	3 - Dual Column	On	2	-		Peak Width	1		0	
	_	Valve #	2 · BF_2	On	5			Slope Sens	1		0	
	4	Strm Sw	_		11		_	Inhibit	1	Off	27.5	
	-	Valve #	4 - SSO1	Off	15		-	Inhibit	1	On	42.8	
	_	Valve #	2-BF_2	Off	21		6	Slope Sens	1		42.9	
	· ·	Valve #	3 - Dual Column	Off	43		- 7	Inhibit	1	Off	48	
	8	Valve #	3 - Dual Column	On	145			Inhibit	1	On	144	
								Peak Width	1		144.1 144.2	
								Slope Sens Inhibit	1	24 Off	144.2	
								Inhibit	1	On	4.77	-
												×
Ĺ		Sort	Delete	Inse	rt Before	•		Sort	Deleti	e Inser	t Before	•
⊢ Sn	ectru	ım Gain Eve	ents				- Analysi	s Time				
50	-		iain Time SEC 0 Delete	Inse	rt Before			alysis Time 🔤 🛛	Cycle Time EC DO			
									Save	OK	Cance	el .

Figure 4-16. The Timed Events window

Note

To sort events by time, click the appropriate **Sort** button.

- 3. Click on the cell that you want to edit. Depending on the cell type, you will either be required to select a value from a drop-down list, or you will be able to type in the value directly.
- 4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

The following table describes the valve-related parameters that are available on the timed events window.

Parameter	Description
TEV Type	 The type of event. You have the following choices: Valve # - A valve. DO # - A discrete output. Strm Sw - Switches to the next stream in the sequence. FID Gain - Sets the FID to high or low gain. FID Auto Zero - Zeros the FID preamp after a gain change.
Valve/DO #	Use the drop-down menu to select the specific valve or discrete output that should be used for the event. This column does not apply if Strm Sw , FID Gain or FID Auto Zero was selected from the TEV Type column.
State	Turns the valve or discrete output on or off, or sets the FID to high or low. This column does not apply if Strm Sw or FID Auto Zero was selected from the TEV Type column.
Time	Indicates the time, in seconds, that the event should occur during the analysis. Enter a value between 0.0 and 3600.0 . NOTE : Event times must be less than the analysis time.

4.3.2 Editing integration events

Integration-related events are grouped on the upper right side of the Timed Events window. To edit integration-related events, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

Table #		Associa	ated Str	eams	
1	1				
2	2				
3					
4					

Figure 4-17. The Timed Events Tables selector window

Note

Other ways of accessing the timed event tables are by pressing F5 or by clicking **"t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

	d Events										
Choose	Table: 2 (A	ssociated Streams: 2)				•				
Valve B	Events —					Integra	tion Events				
	Туре	Valve/D0 #	State	Time			Туре	Det #	Value	Time	
				SEC						SEC	
1	Valve #	4 - SSO1	On	0		1	Inhibit	1	On	0	
2	Valve #	3 - Dual Column	On	2		2	Peak Width	1		0	
3	Valve #	2-BF_2	On	5		3	Slope Sens	1		0	
4	Strm Sw			11		4	Inhibit	1	Off	27.5	
5	Valve #	4 - SSO1	Off	15		5	Inhibit	1	On	42.8	
6	Valve #	2-BF_2	Off	21		6	Slope Sens	1		42.9	
7	Valve #	3 - Dual Column	Off	43		7	Inhibit	1	Off	48	
8	Valve #	3 - Dual Column	On	145		8	Inhibit Distance	1	On	144	
						9	Peak Width	1		144.1	
						10	Slope Sens	1		144.2	
						11	Inhibit Inhibit	1	Off On	150 177	
							mnidik	-	lou	111	-
J											
	Sort	Delete	Inse	ert Before	-		Sort	Delet	e Inser	t Before	-
Spectr	um Gain Ev	ents				- Analysi	s Time				
		Gain Time SEC									
	Sort	Delete	Inse	ert Before	•			Save	OK	Cano	cel

Figure 4-18. The Timed Events window

Note

To sort events by time, click the appropriate Sort button.

- 3. Double-click on the cell that you want to edit. Depending on the cell type, you will either be required to select a value from a drop-down list, or you will be able to type in the value directly.
- 4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

The following table describes the integration-related parameters that are available on the timed events window.

Description
 The type of integration event. You have the following options: Inhibit: Set to Off to start a peak; set to On to end a peak. Integrate: Set to On and Off to set a region in which the area under the trace is computed as a peak regardless of peak onset discovery. The resulting area is added to the raw data as a peak with the retention time set to the Integration Off time. Summation: Set to On and Off to set a region in which the area of all peaks found will be added together to create a single, larger, peak. The peaks that contribute to the summation are marked as partial peaks in the raw data table, and the summation total is added to the raw data as a new peak with the retention time set to the Summation OFF time. Slope Sens: The peak starts when the slope of six consecutive points is greater than the slope sensitivity value that is displayed in the Value column; the peak ends when the slope of six consecutive points is less than the slope sensitivity value that is displayed in the Value column; the peak ends when the slope of six consecutive points is less than the slope of six consecutive points is displayed in the Value column. Peak Width: Each point displayed on the graph represents the average of N raw data points, where N is the value displayed in the corresponding Value column. Single Base: Determines how the baseline is drawn under a peak. Off: The baseline is drawn from the point of peak onset to the point of peak termination. This is not necessarily horizontal and if fact usually has a slight slope. (Default) Bgn: Draws a horizontal baseline from the point of peak onset to a point above or below the peak termination. Fused Overd: Determines how the baseline is drawn when two or more peaks are 'fused' together. Off: A single baseline is drawn from the onset of the first peak of the fused group to the termination of the last peak of the group. (Default) On: Causes a separate baseline to be drawn f

Parameter	Description
Value	 The values available depend on the integration type selected from the TEV Type column. Slope Sensitivity and Peak Width: Enter the number of points, between 1 and 99, to be used. Single Baseline: Select Off, End, Bgn. SW Auto Zero: No options. All other integration types: Select On or Off.
Det #	The ID number of the detector that will be affected by the event. Valid values are 1 and 2.
Time	Indicates the time, in seconds, that the event should occur during the analysis. Enter a value between 0.0 and 3600.0 . NOTE : Event times must be less than the analysis time.

4.3.3 Editing spectrum gain events

The spectrum gain feature graphically magnifies the size of a chromatogram's peaks. The data itself is not affected; only the presentation of the data. This feature can be useful for viewing peaks that are otherwise too small to examine.

Spectrum gain-related events are grouped on the lower left side of the Timed Events window. To edit spectrum gain-related events, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

Table #		Associa	ated Str	eams	
1	1				
2	2				
3					
4					

Figure 4-19. The Timed Events Tables selector window

Note

Other ways of accessing the timed event tables are by pressing F5 or by clicking **"t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

aive	Events —					Integra	tion Events				_
		Valve/D0 #	State				Туре	Det #	Value	Time	1
				SEC						SEC	
	Valve #	4 - SSO1	On	0		1	Inhibit	1	On	0	
	Valve #	3 - Dual Column	On	2		2	Peak Width	1	4	0	
	Valve #	2-BF_2	On	5		3	Slope Sens	1	8	0	
	Strm Sw			11		- 4	Inhibit	1	Off	27.5	
	Valve #	4 - SSO1	Off	15		5	Inhibit	1	On	42.8	
	Valve #	2-BF_2	Off	21		6	Slope Sens	1	48	42.9	
	Valve #	3 - Dual Column	Off	43		7	Inhibit	1	Off	48	
	Valve #	3 - Dual Column	On	145		8	Inhibit	1	On	144	
						9	Peak Width	1	4	144.1	
						10	Slope Sens	1	24	144.2	
						11	Inhibit	1	Off	150	
						12	Inhibit	1	On	177	
										Þ]
	Sort	Delete	Inse	rt Before	•		Sort	Delet	e Inser	t Before	•
pectr	um Gain Ev	ents				Analysi	s Time				
1	Det #	Gain Time SEC 0				An SEC 290	S	Cycle Time EC DO			
	Sort	Delete		rt Before	-						

Figure 4-20. The Timed Events window

Note

To sort events by time, click the appropriate Sort button.

- 3. Click on the cell that you want to edit. Depending on the cell type, you will either be required to select a value from a drop-down list, or you will be able to type in the value directly.
- 4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

The following table describes the spectrum gain-related parameters that are available on the timed events window.

Parameter	Description
Det #	The ID number of the detector that will be affected by the event. Select 1 or 2 .
Gain	Enter a value between 0 and 64 . This is the exponent value in the following expression: $2^{gain \ value}$. For example, a value of 0 means no gain is applied; a value of 5 means the gain is increased to 32 times it's original value.
Time	Indicates the time, in seconds, that the event should occur during the analysis. Enter a value between 0.0 and 3600.0 . NOTE : Event times must be less than the analysis time.

4.3.4 Setting the cycle and analysis time

To set the cycle and analysis time, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

Figure 4-21	The Timed	Events Tables	selector	window
I Iguit I al	• Inc Inneu		SCICCIOI	w mao w

Table #		4	ssociate	d Stream	s	
1	1					
2	2					
3						
4						

Note

Other ways of accessing the timed event tables are by pressing F5 or by clicking it from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the Timed Evetns Tables selector window.

2. Select the table that you want to view. The selected timed events table displays. The **Analysis Time** section is located on the lower right side of the *Timed Events* window.

Figure 4-22. The Timed Events window

	Events —					Integra	tion Events				
-	🚺 Туре	Valve/D0 #	State				Туре	Det #	Value	Time	
				SEC						SEC	
	Valve #	4 - SSO1	On	0		1	Inhibit	1	On	0	
	Valve #	3 - Dual Column	On	2		2	Peak Width	1		0	
	Valve #	2-BF_2	On	5		3	Slope Sens	1	-	0	
	Strm Sw			11		4	Inhibit	1	Off	27.5	
	Valve #	4 - SSO1	Off	15		5	Inhibit	1	On	42.8	
	Valve #	2-BF_2	Off	21		6	Slope Sens	1		42.9	
	Valve #	3 - Dual Column	Off	43		7	Inhibit	1	Off	48	
8	Valve #	3 - Dual Column	On	145		- 8	Inhibit	1	On	144	
						9	Peak Width	1		144.1	
							Slope Sens	1		144.2	
							Inhibit	1	Off	150	
							Inhibit	1	On	177	
										•	
J					- 1			Delet		t Before	-
1	Sort	Delete	Ince	vt Poforo	- 1 1		Sort I				
]	Sort	Delete	Inse	ert Before	-		Sort	Delet	e inser	Cocioic	<u> </u>
J Speci			Inse	ert Before	▼	- Analusi		Delet	e Inser	CECICIC	<u> </u>
Spec	trum Gain Ev	vents	Inse	ert Before	<u>-</u>	Analysi	s Time				
Spec	trum Gain Ev	vents Gain Time	Inse	ert Before	- -	An	s Time alysis Time	Cycle Time			
	trum Gain Ev	vents Gain Time SEC	<u>Inse</u>	ert Before	-	An	s Time alysis Time	Cycle Time EC			
Spec	trum Gain Ev	vents Gain Time		ert Before	-	An	s Time alysis Time	Cycle Time			
	trum Gain Ev	vents Gain Time SEC	Inse	ert Before	-	An	s Time alysis Time	Cycle Time EC			
	trum Gain Ev	vents Gain Time SEC	Inse	ert Before	-	An	s Time alysis Time	Cycle Time EC			

Note

To sort events by time, click the appropriate Sort button.

- 3. Click on the *Analysis Time* cell and enter a value, in seconds, between **0** and **3600**.
- 4. Click on the *Cycle Time* cell and enter a value, in seconds, between **0** and **3620**.

Note	
The Cycle Time must be atleast 10 seconds greater than the Analysis Time.	

5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

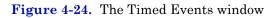
4.3.5 Removing an event from the Timed Event Table

Figure 4-23. The Timed Events Tables selector window

To remove an event from one of the Valve Events, Integrate Events, or Spectrum Gain Events tables on the **Timed Events** window, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

1 1 2 2 3 4	Table #		Asso	ciated Stre	eams	
3	1	1				
-	۷	2				
4	3					
	4					


Note

Other ways of accessing the timed event tables are by pressing F5 or by clicking **t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

alve	Events					Integra	ition Events				_
- 4	Туре	Valve/D0 #	State			- 4	Туре	Det #	Value	Time	
				SEC						SEC	
	Valve #	4 - SSO1	On	0		1	Inhibit	1	On	0	
	Valve #	3 - Dual Column	On	2		2	Peak Width	1		4 0	
	Valve #	2-BF_2	On	5		3	Slope Sens	1		3 0	
	Strm Sw			11		4	Inhibit	1	Off	27.5	
	Valve #	4 - SSO1	Off	15		5	Inhibit	1	On	42.8	
	Valve #	2-BF_2	Off	21		6	Slope Sens	1		3 42.9	
	Valve #	3 - Dual Column	Off	43		7	Inhibit	1	Off	48	
8	Valve #	3 - Dual Column	On	145		8	Inhibit	1	On	144	
						9	Peak Width	1	4	4 144.1	
						10	Slope Sens	1	24	4 144.2	
						11	Inhibit	1	Off	150	
						12	Inhibit	1	On	177	
	Sort	Delete	Inse	nt Before	-		Sort	Delet	e Inse	rt Before	-
_											
pecti	rum Gain Ev	rents				Analysi	is Time				
1	Det #	Gain Time SEC O				Ar SEC 290	S	Cycle Time EC DO			
	Sort	Delete	Inse	rt Before	-						

Note

To sort events by time, click the appropriate Sort button.

- 3. Select the event that you want to delete.
- 4. Click the appropriate **Delete** button.

4.3.6 Adding an event to the Timed Event Table

To add an event to one of the Valve Events, Integrate Events, or Spectrum Gain Events tables on the *Timed Events* window, do the following:

1. Select **Timed Events...** from the **Application** menu. The *Timed Events Tables* selector window appears, displaying a list of available timed events tables.

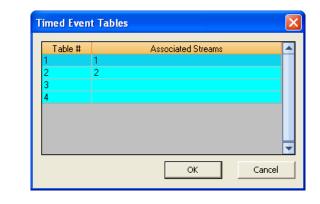


Figure 4-25. The Timed Events Tables selector window

Note

Other ways of accessing the timed event tables are by pressing F5 or by clicking **t** from the Toolbar.

Note

If only one timed events table is available, it will display immediately, bypassing the *Timed Events Tables* selector window.

2. Select the table that you want to view. The selected timed events table displays.

E	Т	ime	d Events										
L	Cho	ose 1	Table: 2 (As	ssociated Streams: 2)					•				
1	-Va	ilve E	vents —					Integral	tion Events				
		4	Туре	Valve/D0 #	State	Time			Туре	Det #	Value	Time	
		4	Valve #	4 - SSO1	On	SEC 0			Inhibit	1	On	SEC O	
			Valve #	3 - Dual Column	On	2	-		Peak Width	1		0	
			Valve #	2 - BF_2	On	5			Slope Sens	1		0	
			Strm Sw			11		4	Inhibit	1	Off	27.5	
			Valve #	4 - SSO1	Off	15			Inhibit	1	On	42.8	
			Valve #	2-BF_2	Off	21	_		Slope Sens	1		42.9	
			Valve #	3 - Dual Column 3 - Dual Column	Off	43 145	-		Inhibit Inhibit	1	Off On	48 144	
		8	Valve #	3 - Duai Column	On	140	-		Peak Width	1		144	
									Slope Sens	1		144.2	
									Inhibit	1	Off	150	
								12	Inhibit	1	On	177	-
												•	
			Sort	Delete	Inse	rt Before	•		Sort	Deleti	e Inser	t Before	-
	-Sp	ectru	ım Gain Eve	ents				- Analysi:	s Time				
			Det # G	iain Time SEC O									
			Sort	Delete	Inse	rt Before	-			Save	ОК	Cance	el
										Jave			

Figure 4-26. The Timed Events window

Note

To sort events by time, click the appropriate Sort button.

3. If you want to add the event *above* the currently selected event, click the appropriate **Insert before** button. If you want to add the event *below* the currently selected event, select **Insert after** from the **Insert** arrow and then click the button.

The new event will be added to the table.

- 4. Select a *Type*, *Valve/DO*#, and *State* for the event, if necessary, and enter a new *Time* for the event also.
- 5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.4 Managing Validation Data Tables

Use the validation data table to hold information about the composition of the gas that is used in the validation run. During a validation run, the GC performs a test analysis of a gas with a known component composition to verify that the GC is working properly.

To add a component to the validation data table, do the following:

1. Select Validation Data from the Application menu. The Validation Data window displays.

ose	e Table: 1 (Associated Streams: 3)	_	
4	Variable	Nominal Value	Percent Deviation
			PCT
	3 - 1 validate Component.Mole %.PROPANE	1.05	10
	3 - 1 validate Component.Mole %.i-BUTANE	0.32	10
	3 - 1 validate Component.Mole %.n-BUTANE	0.33	10
	3 - 1 validate Component.Mole %.NEOPENTANE	2	10
		0	0
		0	0
		0	0
		0	0
		0	0
		0	0
		0	0
		0	0
		0	0
4		0	0
		0	0
		0	0
		0	0
		0	0
		0	0
		0	0

Figure 4-27. The Validation Data window

- 2. If the appropriate table is not displayed, select it from the Choose Table drop-down list.
- 3. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.
- 4. Enter the component's concentration percentage in the appropriate cell under the *Nominal Value* column. To ensure accuracy, this value, which is compared to the GC's analysis results at the end of the validation run, should be taken from the documentation provided with the gas cylinder.
- 5. Enter a value in the appropriate *Percent Deviation* cell. If you enter **10** in this field, and the GC's analysis result for the component differs from the component's *Nominal Value* by $\pm 10\%$ or more, then an alarm is generated.
- To copy a component variable to the next empty row, click C + Copy. The component will be increment to the next available component for example, from Ammonia to Benzene. The *Nominal Value* and *Percent Deviation* values will also be copied.

Note

You can select and copy more than one component at a time.

If there are no components available, instead of copying the component, MON 20/20 will display the following message:

Figure 4-28. No components warning

7. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.5 Managing calculations

MON 20/20's **Calculations** submenu allows you to activate and define how the output of standard or user-defined chromatograph analysis data is used in various calculations.

You can configure the following types of calculations:

- **Control** Allows you to designate, by streams, the standard calculations that should be performed from the analysis data.
- **Averages** Allows you to designate, by streams and components, averages of standard calculations MON 20/20 should perform.
- **User Defined** Allows you to create and edit customized calculations using analysis data.
- **Dewpoint** This optional feature allows you to calculate dewpoint temperatures and to estimate the cricondentherm, which is the temperature above which no liquid will form at any pressure.

4.5.1 Setting standard calculations by stream

To designate, by streams, the standard calculations—for example, mole percent, liquid volume, gas density, Wobbe index, etc.—that should be performed from the analysis data, do the following:

1. Select Applications \rightarrow Calculations \rightarrow Control.... The *Control Calculations* window appears.

		2	3	4	5	6		8	
	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7	Stream 8	
Avg Lmt Alarm Test									
Mole %	Image: A start of the start	 Image: A set of the set of the	Image: A start of the start	Image: A start of the start	Image: A start of the start	Image: A start of the start	Image: A start and a start	Image: A start of the start	
Liquid Volume									
Weight %									
Normalize Results	~	~	~	~	~	~	~	~	
Gas Density									
Real Rel Den Gas - Prim									
Wobbe Index - Sup - Sec 👘									
Z Factor - Prim									
Dry Gross Heating									
Sat Gross Heating									
Dry Net Heating									
Sat Net Heating									
Wobbe Index - Sup - Prim									
Wobbe Index - Inf - Sec									
Gallons/1000 SCF C2+									
Gallons/1000 SCF C3+									
Gallons/1000 SCF C4+									
Gallons/1000 SCF C5+									
Gallons/1000 SCF C6+									
Avg Molecular Wt									
Sup Calorific Val Dry - Prim									
Sup Calorific Val Sat - Prim									
Inf Calorific Val Dry - Prim									
Inf Calorific Val Sat - Prim									
Z Factor - Sec									
Gas Density kg/m3 - Sec									-

Figure 4-29. The Control Calculations window

2. Select a check box for a given stream to turn the calculation ON for that stream; click to clear the check box for a given stream to turn the calculation OFF for that stream.

You can use the arrow keys to move from one stream cell to another, and you can press the space bar to toggle the calculation on or off.

3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

Note

To save the information on this screen to a tab-delimited text file, right-click on the table and select Save Sheet from the right-click menu.

Note

To copy the information on this screen to the clipboard so that it can be pasted into another application such Microsoft Word or Excel, right-click on the table and select **Copy** to clipboard from the right-click menu.

Note

To print the information on this screen, right-click on the table and select **Print Sheet** from the right-click menu.

4.5.2 Editing average calculations

To designate, by streams and components, averages of standard calculations the GC should perform, do the following:

1. Select Applications \rightarrow Calculations \rightarrow Averages.... The Averages Calculations window appears.

Re 1:00	eset Time Weekday Day Sunday 1				
4	Variable	Average Type	Hours	Restart	
			HB		
1	1 - Stream 1 Component.Mole %.PROPANE	Everyrun		NO	
2	1 - Stream 1 Component.Mole %.i-BUTANE	Everyrun		NO	
3	1 - Stream 1 Component.Mole %.n-BUTANE	Everyrun		NO	
4	1 - Stream 1 Component.Mole %.NEOPENTANE	Everyrun		NO	
5	1 - Stream 1 Component.Mole %.i-PENTANE	Everyrun		NO	
6	1 - Stream 1 Component.Mole %.n-PENTANE	Everyrun		NO	
7	1 - Stream 1 Component.Mole %.NITROGEN	Everyrun		NO	
8	1 - Stream 1 Component.Mole %.METHANE	Everyrun		NO	
9	1 - Stream 1 Component.Mole %.CARBON DIOXIDE	Everyrun		NO	
0	1 - Stream 1 Component.Mole %.ETHANE	Everyrun		NO	
1	1 - Stream 1 Component.Mole %.n-NONANE	Everyrun		NO	
12	1 - Stream 1 Component.Mole %.n-HEXANE	Everyrun		NO	
3	1 - Stream 1 Component.Mole %.n-HEPTANE	Everyrun		NO	
4	1 - Stream 1 Component.Mole %.n-OCTANE 🛛 🛛 🛛 😪	Everyrun		NO	
5	Heaters.Temperature.Heater 1	Everyrun		NO	
6	Heaters.Temperature.Heater 2	Everyrun		NO	
7	Heaters.Temperature.Heater 3	Everyrun		NO	
-	Archive (F5) S+ Copy (F7) C+ Copy (F8)	Copy Restart (F9	ปร	ave OK	Cancel

Figure 4-30. The Averages Calculations window

- 2. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.
- 3. Select the type of average to be calculated from the *Average Type* dropdown list. You have the following options:
 - **Unused** An average will not be calculated for the variable.
 - **Hourly** Averages will start and stop every hour, beginning at the time displayed in the *Reset Time* field from the **Averages Reset** section.
 - **24 Hour** Averages will start and stop once a day at the time displayed in the *Reset Time* field from the **Averages Reset** section.

- Weekly Averages will start and stop once a week at the time displayed in the *Reset Time* field and on the day entered in the *Weekday* field, from the **Averages Reset** section.
- **Monthly** Averages will start and stop once a month at the time displayed in the *Reset Time* field and on the day of the month entered in the *Day* field, from the **Averages Reset** section.
- **Variable** Averages will start and stop every hour at the time entered in the *Hours* column, instead of at the Reset Time.
- **Everyrun** No average will be stored; instead, the current value at the end of the run will be stored.
- 4. To set a custom start and stop time for a particular calculation, set the *Average Type* for the calculation to **Variable** and enter the desired time in the *Hours* cell.

Note

The custom *Hours* setting overrides the *Reset Time* setting.

- 5. Set the appropriate **Restart Flag** to one of the following options:
 - NO The current average will not be reset.
 - **CUR** The current average will be cleared and a new average calculation will start.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

Note

To save the information on this screen to a tab-delimited text file, right-click on the table and select Save Sheet from the right-click menu.

Note

To copy the information on this screen to the clipboard so that it can be pasted into another application such Microsoft Word or Excel, right-click on the table and select Copy to clipboard from the right-click menu.

Note

To print the information on this screen, right-click on the table and select Print Sheet from the right-click menu.

4.5.3 Viewing an archive of averages for a given variable

To view an archive of averages for a given variable, do the following:

1. Select Applications \rightarrow Calculations \rightarrow Averages.... The Averages Calculations window appears.

Reset Time	Weekday Day Sunday 1				
	Variable	Average Type	Hours HR	Restart	
1		Unused		10	
2		Unused		10	
3		Unused		10	
4		Unused		10	
5		Unused		10	
6		Unused	1	10	
7		Unused		10	
8		Unused	1	10	
9		Unused	1	10	
10		Unused	1	10	
11		Unused		10	
12		Unused		10	
13		Unused		10	
14		Unused		10	
15		Unused		10	
16		Unused		10	
17		Unused		10	
18		Unused		10	
19		Unused		10	
20		Unused		10	
21		Unused		10	
22		Unused		10	

Figure 4-31. The Averages Calculations window

- 2. Click on the desired variable to view its history.
- 3. Click **Archive**. The archive data screen appears.

DateTime	Average	Min	Max	Samples
Current Value				
1970-01-01-00:00:00	0.000	0.000	0.000	1
Archive Values				
1 2008-10-13 07:30:21	0.000	0.000	0.000	1
2 2008-10-13 07:25:16	0.000	0.000	0.000	1
3 2008-10-13 07:20:10	0.000	0.000	0.000	1
4 2008-10-13 07:15:06	0.000	0.000	0.000	1
5 2008-10-13 07:10:00	0.000	0.000	0.000	1
6 2008-10-13 07:04:52	0.000	0.000	0.000	1
7 2008-10-13 06:59:44	0.000	0.000	0.000	1
8 2008-10-13 06:54:36	0.000	0.000	0.000	1
9 2008-10-13 06:49:27	0.000	0.000	0.000	1
10 2008-10-13 06:44:22	0.000	0.000	0.000	1
11 2008-10-13 06:39:17	0.000	0.000	0.000	1
12 2008-10-13 06:34:11	0.000	0.000	0.000	1
13 2008-10-13 06:29:04	0.000	0.000	0.000	1
11 0000 10 10 00-00-00	0.000	0.000	0.000	1

Figure 4-32. The archive data window

Note

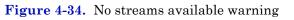
To copy the information in this table to the clipboard so that it can be pasted into another application such as Microsoft Word or Excel, select the cells that you want to copy and then press CTRL + C to copy the information to the clipboard.

4.5.4 Copying stream settings

To copy the stream settings from a highlighted row and apply them to the next row, do the following:

1. Select **Applications** \rightarrow **Calculations** \rightarrow **Averages**.... The *Averages Calculations* window appears.

Averages Calculations 00:00 Sunday 1 Restar Average Type Hours Unused NO Unused NO Unused NO Unused NΠ Unused NΠ Unused NO NO Unused NO Unused Unused NO Unused NΠ Unused NΠ NO Unused NO Unused NO Unused NO Unused Unused NO Archive (F5)... S+ Copy (F7) C+ Copy (F8) Copy Restart (F9) Save ΟK Cancel


Figure 4-33. The Averages Calculations window

- 2. Select the row that you want to copy.
- 3. Click **S** + Copy. The stream will be copied to the next row and incremented to the next available stream—for example, from Stream 2 to Stream 3.

Note

You can select and copy more than one stream at a time.

If there are no streams available, instead of copying the stream, MON 20/20 will display the following message:

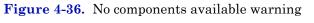
4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.5.5 Copying component settings

To copy the component settings from a highlighted row and apply them to the next row, do the following:

1. Select **Applications** \rightarrow **Calculations** \rightarrow **Averages**.... The *Averages Calculations* window appears.

)	Weekday Day Sunday 1				
1	Variable	Average Type	Hours	Restart	
			HR		
_		Unused	_	NO	-
_		Unused		NO	-
		Unused Unused		NO NO	
		Unused		NO	-
_		Unused		NO	-
		Unused	_	NO	-
		Unused		NO	-
		Unused		NO	-
		Unused		NO	-
		Unused		NO	-
		Unused		NO	
		Unused		NO	-
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	
		Unused		NO	_
			_		1


Figure 4-35.	The Averages	Calculations	window
--------------	--------------	--------------	--------

- 2. Select the row that contains the component that you want to copy.
- 3. Click the arrow beside the **S** + **Copy** button to switch it to **C** + **Copy**.
- 4. Click **C** + **Copy**. The component will be copied to the next row and incremented to the next available component—for example, from Ammonia to Benzene.

Note

You can select and copy more than one component at a time.

If there are no components available, instead of copying the component, MON 20/20 will display the following message:

MON 20	/20
⚠	Unable to increment further!
	ОК

5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.6 Creating Custom Calculations

To create or edit a customized calculation using GC analysis data, do the following:

1. Select **Applications** \rightarrow **Calculations** \rightarrow **User Defined**.... The *User Defined Calculations* window appears, containing a list of all the userdefined calculations that are available to the GC.

7	Label	Comment	Calc Frequency	Start Time		Error Description	
	User Cal 01		Disable		0	This calculation has been disabled!	
	User Cal 02		Disable		0	This calculation has been disabled	
	User Cal 03		Disable		0	This calculation has been disabled!	
	User Cal 04		Disable		0	This calculation has been disabled!	
	User Cal 05		Disable		0	This calculation has been disabled	
	User Cal 06		Disable		0	This calculation has been disabled!	
	User Cal 07		Disable		0	This calculation has been disabled!	
	User Cal 08		Disable		0	This calculation has been disabled!	
	User Cal 09		Disable		0	This calculation has been disabled!	
	User Cal 10		Disable		0	This calculation has been disabled!	
	User Cal 11		Disable		0	This calculation has been disabled!	
	User Cal 12		Disable		0	This calculation has been disabled!	
	User Cal 13		Disable		0	This calculation has been disabled	
	User Cal 14		Disable		0	This calculation has been disabled!	
	User Cal 15		Disable		0	This calculation has been disabled!	
	User Cal 16		Disable		0	This calculation has been disabled!	
	User Cal 17		Disable		0	This calculation has been disabled!	
	User Cal 18		Disable		0	This calculation has been disabled!	
	User Cal 19		Disable		0	This calculation has been disabled!	
	User Cal 20		Disable		0	This calculation has been disabled!	
	User Cal 21		Disable		0	This calculation has been disabled	
	User Cal 22		Disable		0	This calculation has been disabled!	
	User Cal 23		Disable		0	This calculation has been disabled!	
	User Cal 24		Disable		0	This calculation has been disabled	
	User Cal 25		Disable		0	This calculation has been disabled!	
	User Cal 26		Disable		0	This calculation has been disabled!	

Figure 4-37. The User Defined Calculations window

2. Click **Insert before** to add a row to the *User Defined Calculations* table.

Note

To delete this--or any--row from the table, click **Delete**.

- 3. Double-click the *Label* cell and enter a name for the calculation you are about to create. If you want to enter a short description for the new calculation, double-click the *Comment* cell and enter it there.
- 4. Click Edit. The Edit User-defined Calculation window appears.

	Edit User-defined Calculation - "Two Component Average"		
	Calculation Steps :		
	#0		
<u>A</u>	▶		
	Clear All Clear Line Delete Line Copy Paste Insert Condition		В
	Edit		
С			
	Clear Delete Item Evaluate Exp Done		
	Insert		Е
	x^y SQRT abs (7 8 9 / Constants	Edit Terreson (
D	sin cos tan) 4 5 6 x Temporary Variables	Edit Temporary Variables	
	log10 log2 in e 1 2 3 ·		
	and or xor 0 +/ + System Variables	Edit Constants	
	Output :		
F			
	Calculate Evaluate Ok	Cancel	
			l i

Figure 4-38. The Edit User-defined Calculation window

In MON 20/20, building a calculation is similar to building a simple program. You have constants and two types of variables available, as well as two calculation-building commands. You can also add comments that will be ignored by the application but that can help you explain the logic and structure of the calculation you are designing. The following is a description of the design elements of the *Edit Userdefined Calculation* window:

- Element **A** Called the **Calculation Steps Viewer**, this element displays the line-by-line construction of the calculation as it is being built. The following commands allow you to interact with this area:
 - Click **Clear All** to clear the content of the Calculation Steps Viewer.
 - Click **Clear Line** to clear the content of the selected line.

Note

If the selected line is an "If-Then" statement, then the entire condition is cleared. This button is disabled when the cursor is on an "else" or "endif" condition.

• Click **Delete Line** to delete the selected line.

Note

•

If the selected line is the beginning of a conditional statement, then the entire "If-Then" block will be deleted along with the expressions that constitute the "If-Then" construct. If the selected line is part of the conditional "If-Then" construct—that is, the line only has "Else" or "Endif" in it—then the entire "If-Then" construct will be deleted.

- Click **Copy** to copy the selected line to the clipboard. You cannot copy keywords such as "**else**" or "**endif**."
- Click **Paste** to paste the content of the clipboard into a selected line. If the line already has a calculation in it, it is cleared before the content of the clipboard is pasted into it.
- Element **B** A drop-down menu with the following three commands:
 - **Insert Comment** Adds a comment to the calculation. Each comment is preceded by "//."
 - **Insert Condition** Adds an "If-Then" statement to the calculation.
 - **Insert Expression** Adds a mathematical expression to the calculation.
 - Element C Also called the **Expression Editor**, this section is the work area where the comment, condition or expression is built before being added to the Calculation Steps Viewer. There are four modes of the Expression Editor, depending upon what action is being performed:

Figure 4-39. Expression Editor - No Action Edit Clear Delete Item Evaluate Exp Done

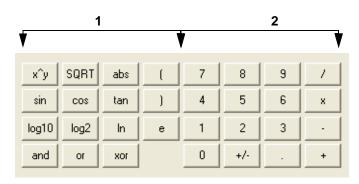
Figure 4-41. Expression Editor - Insert Condition

Edit Condition					
If				== _ PI	·
	Clear	Delete Item	Evaluate Exp	Done	

Figure 4-42. Expression Editor - Insert Expression

Edit Expression					
Two Component A					
	Clear	Delete Item	Evaluate Exp	Done	

The following commands allow you to interact with the Expression Editor:


- Click **Clear** to clear the content of the entire line. The line itself is not deleted.
- Click **Delete Item** to delete the currently active token. Each mathematical function, numeric data, and mathematical operation is treated as a token. The token to the right of the current cursor location is treated as the currently active token.
- Click **Evaluate Exp** to check the validity of the expression. If any errors are detected in the syntax, then an error will be reported in the Output window.

Note

This button is only active when the line being edited is an expression.

- Click **Done** to evaluate the expression and copy it to the Calculations Steps Viewer. If there are any errors in the expression, they are reported in the Output window.
- Element **D** This section contains calculator functions that can be used to build a mathematical expression. This section can be divided into two parts:

Figure 4-43. Calculator functions

x^y	x to the power of y
SQRT	Square Root
abs	Absolute Value
sin	Sine
cos	Cosine
tan	Tan
log10	Logarithm to the base 10
log2	Logarithm to the base 2
ln	Logarithm to the base e
and	Logical AND
or	Logical OR
xor	Logical XOR
(Open bracket
)	Close bracket

• Section 1 - This section contains the following keys:

• Section 2 - This section contains the traditional calculator keys and can be used with your keyboard's **Numpad**.

Note

Make sure to engage your keyboard's Numlock before using the Numpad.

- Section ${\bf E}$ - This section contains drop-down menus and buttons that allow you to create and select constants and variables that can be added to your mathematical expressions.

- **Constants** Allows you to select constants from a drop-down list.
- **Temporary Variables** Allows you to select temporary, usercreated variables from a drop-down list.
- System Variables Allows you to select system variables.
- Edit Temporary Variables Allows you to create variables.
- Edit Constants Allows you to create system-wide constants that can be used in user-defined calculations.
- Section ${\bf F}$ This section, called the ${\bf Output \ Display},$ displays status information.
- 5. Use the following procedures to build your calculation in the Calculation Steps Viewer:
 - "Inserting a Comment" on page 4-54
 - "Inserting a Conditional Statement" on page 4-56
 - "Inserting an Expression" on page 4-59
 - "Creating a Constant" on page 4-61
 - "Creating or Editing a Temporary Variable" on page 4-63
 - "Inserting a System Variable" on page 4-64
 - "Using User-defined Calculations" on page 4-65
- To see the result of the calculation, click Calculate. The results display in the Output window. To validate the calculation for errors, click Evaluate. The results of the validation check display in the Output window. To save the calculation and to close the *Edit Userdefined Calculation* window, click OK.
- 7. On the *User Defined Calculations* window, to save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.6.1 Inserting a Comment

To add a comment to the calculation, do the following:

1. Click on the *Insert* drop-down list and select **Insert Comment**. A new line will be added to the **Calculation Steps Viewer** and the **Expression Editor** will switch to *Edit Comment* mode.

Figure 4-44. Edit Comment mode

2. Enter the comment into the *Edit Comment* textbox and then click **Done**. The comment will be added to the **Calculation Steps Viewer**.

Figure 4-45. Calculation Steps Viewer

Edit User-defined Calculation - "Two Component Avg"	
Calculation Steps :	
#0	
#1 //This is a very important comment.	
Clear All Clear Line Delete Line Copy Paste Insert Comment	•
This is a very important comment.	
Clear Delete Item Evaluate Exp Done	

4.6.2 Inserting a Conditional Statement

Figure 4-46. An example of a conditional statement

Edit User-defined Calculation - "Two Component Avg"	
Calculation Steps :	
#0	
#1 if (Conc < Var1)	
#2 xyz = Var2 + Var3	
#3 else	
#4 xyz = Conc	
#5 endif	
	•
If Var1	-
Clear Delete Item Evaluate Exp Done	

The **Expression Editor** in *Edit Condition* mode allows you to build the first line of the conditional statement:

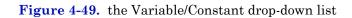
Figure 4-47. The Expression Editor in Edit Condition mode

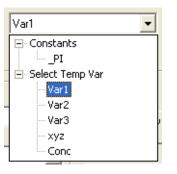
Regular expression	Variables/Constants
- Edit Condition	
Clear Delete Item Evalua	te Exp Done
Relational operator	

Expressions are built using the **Expression Editor** in *Edit Expression* mode.

To add a conditional statement, do the following:

- 1. Click on the *Insert* drop-down list and select **Insert Condition**. A new line is added to the **Calculation Steps Viewer** and the **Expression Editor** switches to *Edit Condition* mode.
- 2. Add an expression. You can use constants, temporary variables, system variables, and the calculator functions to build the expression. For information on inserting system variables, see page 4-64. For information on creating variables, see page 4-63. For information on creating constants, see page 4-61.


Figure 4-48. Edit Expression area


Edit Expression	▼ = Va	r2 + Va	r3 / s	art (V	/ar2 - \	/ar3)	
	C	lear	Dele	e Item	Eval	uate Exp Done	
						- Insert	
x^y SQRT	abs (7	8	9	1	Constants	
sin cos	tan)	4	5	6	×	PI Temporary Variables	Edit Temporary Variables
log10 log2	ln e	1	2	3	•	Var3	
and or	xor	0	+/-		+	System Variables Component Data Table 1.Ret Time	Edit Constants

3. Select a relational operator from the drop-down list. You have the following options:

<	Less than
<=	Less than or equal
>	Greater than
>=	Greater than or equal
==	Equal
!=	Not equal

4. To add a variable or constant to the expression, click the *Variable / Constant* drop-down list and select the appropriate item.

For information on creating variables, see page 4-63. For information on creating constants, see page 4-61.

5. Click **Done**. MON 20/20 validates the statement and if there are no errors, it adds it to the Calculation Steps Viewer.

Figure 4-50. Calculation Steps Viewer

To complete the conditional statement, use the **Expression Editor** in *Edit Expression* mode to add the necessary mathematical expressions.

4.6.3 Inserting an Expression

A mathematical expression has the following structure:

 $Variable = Regular \ expression$

			<u>regular ex</u>	pression
Edit Expression				
	Clear Delete Item	Evaluate Exp	Done	

To add an expression to a conditional statement or calculation, do the following:

- 1. Click on the *Insert* drop-down list and select **Insert Expression**. A new line is added to the **Calculation Steps Viewer** and the **Expression Editor** switches to *Edit Expression* mode.
- Select a variable from the *Variable* drop-down tree view. You can select either a temporary variable or you can set the expression you are building as the final result of your new user-defined calculation. For instance, if the user-defined calculation you are building is called 'User Calc 1,' then you can select User Calc 1 from the Final Result tree view. For information on creating variables, see "Creating or Editing a Temporary Variable" on page 4-63.

Figure 4-52. The Final Result tree view

- xyz - Final Result - Two Compc - Select Temp Va - Var1 - Var2 - Var3 - Var3 - Var3
- Add a regular expression. You can use constants, temporary variables, system variables, and the calculator functions to build the expression. For information on inserting system variables, see page 4-64. For information on creating variables, see page 4-63. For information on creating constants, see page 4-61.

Figure 4-53. The Edit Expression area

Var1		•	■ Var2	2 + Va	ar3 / s	qrt (\	/ar2 -	Var3)
			Clea	ar	Dele	te Item	Eva	luate Exp Done
								Insert
х^у	SQRT	abs	(7	8	9	1	Constants
sin	cos	tan)	4	5	6	×	Temporary Variables Edit Temporary Variables
log10	log2	In	е	1	2	3	•	Var3
and	ro	NOL		0	+/-		+	System Variables Edit Constants

4. Click **Done**. MON 20/20 validates the statement and if there are no errors, it adds it to the **Calculation Steps Viewer**.

	Figure 4-54	I. The	Calculation	Steps	Viewer
--	-------------	--------	-------------	-------	--------

Edit User-defined Calculation - "Two Component Avg"	
Calculation Steps :	
#0	
#1 Var1 = Var2 + Var3 / sqrt(Var2 - Var3)	
Clear All Clear Line Delete Line Copy Paste Insert Expression	-
Edit Expression	
Var1 ■ = Var2 + Var3 / sqrt(Var2 - Var3)	
Clear Delete Item Evaluate Exp Done	

4.6.4 Creating a Constant

To create a constant that you can use in building a calculation, do the following:

1. From the *Edit User-defined Calculation* window, click **Edit Constants**. The *Edit Constants* window displays, showing all the constants that have been created so far for the GC.

	Label	Value	Comment	
		0.0		
•				Þ
•			Delete Insert Bef	

Figure 4-55. The Edit Constants window

2. To create a new constant, click **Insert before**. A new row will be added to the *USER_CALC_CONSTANTS* table.

Note

To delete a constant, select it in the table and click Delete.

3. Double-click the *Label* cell and enter a name for the constant.

Note

To edit any cell, double-click it.

- 4. Double-click the *Value* cell and enter a value for the constant.
- 5. Use the *Comment* cell to store information that is relevant for the constant.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.6.5 Creating or Editing a Temporary Variable

To create a temporary variable that you can use in building a calculation, do the following:

1. From the *Edit User-defined Calculation* window, click **Edit Temporary Variables**. The *Edit Temporary Variables* window displays, showing all the temporary variables that have been created so far for the user-defined calculation.

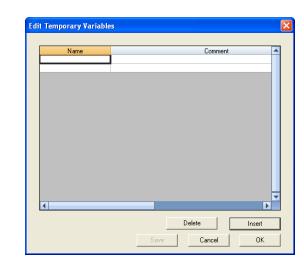


Figure 4-56. The Edit Temporary Variables window

2. To create a new temporary variable, click **Insert**. A new row will be added to the table.

Note

To delete a variable from this window, select it in the table and click Delete.

- 3. Double-click the *Name* cell and enter a name for the variable.
- 4. Use the *Comment* cell to store information that is relevant for the variable.
- 5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.6.6 Inserting a System Variable

To insert a system variable into the Expression Editor, do the following:

From the *Edit User-defined Calculation* window, click on the *System Variables* drop-down arrow.

For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

The selected system variable displays in the *System Variables* drop-down box and in the **Expression Editor**.

#0 #1 #2 Clear All Clear Line Delete Line Copy Paste Insert Condition Edit Condition If Component Data Table 1.Ret Time.PROPANE ■ Clear Delete Item Evaluate Exp Done Clear Delete Item Evaluate Exp Done Sin cos tan 1 4 5 6 x log10 log2 ln e 1 2 3 ·	Calculation	ser-defined Calculation - "MyCalc2"
#2 Clear All Clear Line Delete Line Copy Paste Insert Condition Edit Condition If Component Data Table 1.Ret Time.PROPANE Image: Component Data Table 1.Ret Time.PROPANE Image: Component Data Table 1.Ret Time.PROPANE Image: Component Data Table 1.Ret Time.PROPANE If Component Data Table 1.Ret Time.PROPANE Image: Component Data Table 1.Ret Time.PROPANE Image: Component Data Table 1.Ret Time.Properties sin cos tan) 4 5 6 x sin cos tan) 4 5 6 x log10 log2 in e 1 2 3 Image: Component Data Table 1.Ret Time. Edit Const and or xor 0 +/- . + Component Data Table 1.Ret Time. Edit Const		
Clear All Clear Line Delete Line Copy Paste Insert Condition Edit Condition If Component Data Table 1.Ret Time.PROPANE Image: Clear Delete Item Evaluate Exp Done Clear Delete Item Evaluate Exp Done Image: Clear Edit Constants Image: Clear Edit Temporary Variables sin cos tan) 4 5 6 x Image: Clear Edit Temporary Variables Edit Temporary Variables log10 log2 n e 1 2 3 Image: System Variables Edit Const and or xor 0 +/- . + Component Data Table 1.Ret Time Edit Const		
Edit Condition If Component Data Table 1.Ret Time.PROPANE If Clear Delete Item Evaluate Exp Done Insert Constants Insert In	#2	
x^yy SQRT abs (7 8 9 // Constants Insert sin cos tan) 4 5 6 x Temporary Variables Edit Temporary Variables log10 log2 ln e 1 2 3 - System Variables Edit Const and or xor 0 +/- . + System Variables Edit Const	Edit Con	dition
x^y SQRT abs (7 8 9 / Constants sin cos tan) 4 5 6 x Temporary Variables log10 log2 in e 1 2 3 - Temporary Variables and or xor 0 +/- . + System Variables Edit Const		
	sin log10	SQRT abs (7 8 9 / Constants cos tan) 4 5 6 x Temporary Variables Edit Temporary Variables log2 In e 1 2 3 - System Variables Edit Temporary Variables or xor 0 +/- . + System Variables Edit Const

4.6.7 Using User-defined Calculations

You can use a previously-created user-defined calculation when building new calculations by clicking on the *System Variables* drop-down arrow on the *Edit User-defined Calculation* window.

Figure 4-58. System Variables drop-down menu

S	iystem Variables	
Γ		-
	User Calculations	
	💌 Component Data Table 1	- E
	💌 Ret Time	- 1
	METHANE	- 1
	[CANCEL]	
2	[DONE]	- 1
-		

For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

The selected system variable displays in the *System Variables* drop-down box and in the **Expression Editor**.

	dit Us	er-defi	ned Ca	lculati	on - "U	ser Cal	: 2"		
		Steps :							
#		Heor (Tale 2	= 1.1c	or Do	fined	Calcul	ation	s.Calc Result.User Calc 1
17	1	User (er De	nneu ·		creiori	
	Clear A		Clear L	.ine	Delete	Line	Co	ру	Paste Insert Expression
Γ ^Ε	dit Expr	ession							
	User Ca	ilc 2	-	• Use	r Defi	ned Ca	alculat	tions.	Calc Result.User Calc 1
				Clea	ar	Dele	e Item	Ev	aluate Exp Done
	х^у	SQRT	abs	(7	8	9	1	Constants
	sin	cos	tan)	4	5	6	×	Temporary Variables
	log10	log2	In	е	1	2	3		
	and	or	xor		0	+/-		+	System Variables Edit Constants
									User Defined Calculations.Calc Re 💌
	tput : ucces	s							
								_	Calculate Evaluate Ok Cancel

Figure 4-59. The Expression Editor

4.7 Setting the calculation method

MON 20/20 can be configured to perform GPA calculations, ISO calculations, or both.

To set which type of calculation method MON 20/20 should use, do the following:

1. Select **Applications** \rightarrow **Calculations** \rightarrow **Configuration...**. The *Calculations Configuration* window displays.

Calculation Method	GPA 💌	
Base Pressure Units	PSI	
GPA Calculation Units	U.S.	
GPA Pressure Display	PSI	
ISO Pressure Display		
Primary Temperatures		
Secondary Temperatures		
Primary CV Units		
Secondary CV Units		

Figure 4-60. The Calculations Configuration window

- 2. Select the method from the *Calculation Method* drop-down list. The options are:
 - GPA
 - ISO
 - GPA & ISO

- 3. Select a unit of measure from the *Base Pressure Units* drop-down list. The options are:
 - PSI
 - Bar
 - kPa
- 4. If you set the calculation method to **GPA** or **GPA** & **ISO**, you can also set the following options:
 - GPA Calculator Units (U.S. or S.I.)
 - GPA Pressure Display (PSI, Bar or kPa)
- 5. If you set the calculation method to **ISO** or **GPA & ISO**, you can also set the following options:
 - ISO Pressure Display (Bar or kPa)
 - Primary Temperatures
 - 0C/0C
 - 0C/15C
 - 0C/20C
 - 15C/0C
 - 15C/15C
 - 15C/20C
 - 20C/0C
 - 20C/15C
 - 20C/20C
 - 25C/0C
 - 25C/15C
 - 25C/20C

Note

Updating this field also updates the primary values—Sum Factor Pri, CV Superior Pri and CV Inferior Pri—that display in the CDT.

• Secondary Temperatures (same options as Primary Temperatures)

Note

Updating this field also updates the secondary values—Sum Factor Sec, CV Superior Sec and CV Inferior Sec—that display in the CDT.

- Primary CV Units
 - kilojoules per cubic meter (kJ/m3)
 - kilocalories per cubic meter (kCal/m3)
 - kilowatt hours per cubic meter (kWhrs/m3)
 - megajoule per cubic meter (MJ/m3)
 - megajoule per kilogram (MJ/kg)
 - megajoule per mole (MJ/mole)
- Secondary CV Units (same options as Primary CV Units)
- 6. Click **Save** to accept the changes without closing the window, or click **OK** to accept the change and close the window.

4.8 Setting alarm limits

Use this function to set threshold limits for GC analysis data. When a limit is exceeded, an alarm is activated and logged. See "Viewing the alarm log" on page 5-4 for information on Alarm Logs.

To set an alarm limit for a variable, do the following:

1. Select **Applications** \rightarrow **Limit Alarms...**. The *Limit Alarms* window displays.

		Туре	Low Limit	High Limit	DO # to Set	Inhibit Avg	User Alarm Text	Inhibit Alarm Text	Delay	Halt on Alarm?
									SEC	
ACCORD.	rs.Temperature.Heater 4	∼ All	49	51	Unused		Heater 4 Out of Range		0	
2		Off			Unused		() () () () () () () () () () () () () (0	
3		Off			Unused				0	
4		Off			Unused				0	
5		Off			Unused				0	
6		Off			Unused				0	
7		Off			Unused				0	
8		Off			Unused				0	
9		Off			Unused				0	
0		Off			Unused				0	
1		Off			Unused				0	
2		Off			Unused				0	
3		Off			Unused				0	
4		Off			Unused				0	
5		Off			Unused				0	
6		Off			Unused				0	
7		Off			Unused				0	
8		Off			Unused				0	
9		Off			Unused				0	
20		Off			Unused			1	0	
21		Off			Unused				0	
2		Off			Unused				0	
23		Off			Unused				0	
24		Off			Unused				0	
25		Off			Unused				0	
		04			(for the second				0	1000

Figure 4-61. The Limit Alarms window

- 2. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.
- 3. To change the alarm type, click the appropriate cell under the *Type* column. You have the following the options:
 - **Off** Turns off the alarm.
 - All Use high and low limits to activate alarms. Enter the lower limit value in the appropriate cell under the *Low Limit* column. Enter the upper limit value in the appropriate cell under the *High Limit* column.
 - **High** If the status value of the variable rises above the value set in the corresponding *High Limit* column, the high limit alarm is activated.
 - **Low** If the status value of the variable falls below the value set in the corresponding *Low Limit* column, the low limit alarm is activated.

- 4. If you want a discrete output to activate when the alarm triggers, click on the appropriate cell under the *DO* # to *Set* column and select it from the drop-down list.
- 5. To prevent or allow averaging when the alarm triggers, double-click on the appropriate cell under the *Inhibit Avg* column, and select one of the following options:
 - **True** Inhibits averaging when the alarm is active.
 - **False** Allows averaging when the alarm is active.
- 6. To customize the text of the alarm message, enter the new text in the appropriate cell under the *User Alarm Text* column. When the alarm triggers, this text will display under the *Alarm Message* column on the *Unack/Active Alarms* window.

Note

If an alarm message is changed, all affected alarm entries, including those previously recorded, will include that change.

- 7. To enable or disable the use of the customized alarm text, select **True** or **False** from the appropriate cell under the *Inhibit Alarm Text* column.
- 8. To copy the stream settings from a highlighted row and apply them to the next row, click **S** + **Copy**. The stream will be copied and incremented to the next available stream--for example, from Stream 2 to Stream 3.

If there are no streams available, instead of copying the stream, MON 20/20 will display the following message:

Figure 4-62. No streams available warning

MON 20	/20
⚠	Unable to increment further!
	ОК

9. Click **C** + **Copy**. The component will be copied and incremented to the next available component--for example, from Ammonia to Benzene.

If there are no more components available, instead of copying the component, MON 20/20 will display the following message:

- 10. If you want the GC to halt after the current analysis when an alarm is triggered, do the following:
 - (a.) Select the Halt on Alarm? checkbox.
 - (b.) Enter a value in the *Delay* column for the length of time, in seconds, that the alarm condition should exist before the Halt command is executed. You can enter a value between **0** and **1800**.
- 11. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.9 Managing system alarms

To edit system alarms, do the following:

1. Select **System Alarms...** from the **Applications** menu. The *System Limit Alarms* window displays.

Label	DO# to Set	Inhibit Avg	Is Alarm Enabled?	Delay SEC	Halt on Alarm?
Maintenance Mode	Unused			(
Power Failure	Unused			(
User Calculation Failure	Unused			(
FF Board Failure	Unused			(
Low Battery Voltage	Unused			(
Preamplifier Not Installed	Unused		Image: A start and a start	0	
Heaters Not Installed	Unused		V	0	
Valves Not Installed	Unused		V	0	
GC Idle	Unused		Image: A start and a start	0	
Analysis Failure	Unused		Image: A state of the state	0	
WarmUp Failure	Unused		Image: A start and a start	0	
Heater 1 Failure	Unused			(
Heater 2 Failure	Unused			(
Heater 3 Failure	Unused		Image: A start of the start	(
Heater 4 Failure	Unused		Image: A start of the start	0	
Valve 1 Failure	Unused			0	
Valve 2 Failure	Unused		Image: A start of the start	0	
Valve 3 Failure	Unused		V	0	
Valve 4 Failure	Unused			0	
Valve 5 Failure	Unused		Image: A start of the start	0	
Valve 6 Failure	Unused			0	
Valve 7 Failure	Unused			C	
Valve 8 Failure	Unused			C C	
Valve 9 Failure	Unused			ĺ.	
Valve 10 Failure	Unused	Ē		C C	
Valve 11 Failure	Unused	Ē			
VI ADDA	0.0	H			

Figure 4-64. The Limit Alarms window

- 2. If you want a discrete output to activate when the alarm triggers, click on the appropriate cell under the *DO* # to *Set* column and select it from the drop-down list.
- 3. To prevent or allow averaging when the alarm triggers, double-click on the appropriate cell under the *Inhibit Avg* column, and select one of the following options:
 - True Inhibits averaging when the alarm is active.
 - False Allows averaging when the alarm is active.
- 4. To enable the alarm check the checkbox under the *Is Alarm Enabled?* column; to disable the alarm, uncheck the checkbox under the *Is Alarm Enabled?* column; to disable the alarm.

- 5. If you want the GC to halt after the current analysis when an alarm is triggered, do the following:
 - (a.) Select the Halt on Alarm? checkbox.
 - (b.) Enter a value in the *Delay* column for the length of time, in seconds, that the alarm condition should exist before the Halt command is executed. You can enter a value between 0 and 1800.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.10 Managing streams

This function allows you to do the following:

- Assign component data tables, validation data tables, and timed events tables to a particular stream.
- Designate a stream for analysis, validation, or calibration.
- Control automatic calibration or validation parameters, such as the total number of runs, runs to be averaged, starting times, and time between automatic calibrations and baseline runs.
- Define baseline pressure and temperature conditions that are applicable to calculated GC analysis data, such as compressibility.

4.10.1 Designating how a stream will be used

To assign how a stream will be used, do the following:

1. Select **Streams...** from the **Application** menu. The *Streams* window opens.

Figure 4-65. The Streams window

		Det #	Usage	CDT			Auto	Total Runs	Avg Runs	Start Time	Interval	Stream Valve	Stream Valve ON to Select	Base Pressure	Base Temp	Optional O Pressure 1 Pre
											HR			PSIA	DEGF	PSIA
1	Stream 1	1,2	Analy	CDT 1	TEV 1							Stream 1	~	14.73	60	0.00
	Stream 2	1,2	Analy	CDT 1	TEV 1							Stream 2	 Image: A start of the start of	14.73		0.00
	Stream 3	1,2	Validate	CDT 1	TEV 1	VDT 1		3	2	2 1/1/1970 12:00:01 AM	1	Stream 1	 Image: A start of the start of	14.73		0.00
	Stream 4	1	Unused									Unused			60	
	Stream 5	1	Unused									Unused	Image: A start of the start		60	
	Stream 6	1	Unused									Unused	 Image: A start of the start of		60	
	Stream 7	1	Unused									Unused			60	
	Stream 8	1	Unused									Unused	Image: A start of the start		60	
	Stream 9	1	Unused									Unused	 Image: A start of the start of		60	
	Stream 10		Unused									Stream 1	 Image: A set of the set of the		60	
	Stream 11		Unused									Unused	 Image: A start of the start of		60	
	Stream 12		Unused									Unused			60	
	Stream 13		Unused									Unused	 Image: A start of the start of		60	
	Stream 14	1	Unused									Unused	 Image: A start of the start of		60	
		,											Sa		OK	Cance

- 2. For the appropriate stream, select one of the following options from the *Usage* column:
 - Unused Not used
 - Cal Calibration
 - Analy Analysis
 - Validate Validation
- 3. If you select **Cal** or **Validation**, you can also edit the following parameters:
 - Auto If checked, the calibration or validation will be automatic.
 - **Tot Runs** The number of runs, from **1** to **10**, to make for each calibration.
 - **Avg Runs** The number of most-recent calibration runs to average; for instance, if five calibration runs are performed and **Avg Run** is set to 3, then the last three runs of the five will be used to average the calibration results.
 - **Start Time** The time the first automatic calibration should be performed.
 - Interval The number of hours between automatic calibrations.
 - Auto Calib Enable or disable the automatic calibration run.

• Auto Baseline - Enable or disable the automatic baseline run. The GC performs an additional calibration run (before the calibration runs to be averaged) without the calibration gas. This run evaluates the peaks caused by the GC valve action alone; any peak areas found are subtracted from the subsequent analyses.

Note

Disabling the Auto Baseline setting will delete existing CDT baseline data for the associated stream.

4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.10.2 Assigning a valve to a stream and setting the relationship between the stream's open state to the valve's On/Off state

To assign a valve to a stream, do the following:

1. Select **Streams...** from the **Application** menu. The *Streams* window opens.

	Det #	Usage	CDT			Auto	Total Runs	Avg Runs	Start Time	Interval	Stream Valve	Stream Valve ON to Select	Base Pressure	Base Temp	Optional Pressure 1	O Pri
										HR			PSIA	DEGF	PSIA	
Stream 1	1,2	Analy	CDT 1	TEV 1							Stream 1		14.73	60	0.00	
Stream 2	1,2	Analy	CDT 1	TEV 1							Stream 2		14.73	60	0.00	
Stream 3	1,2	Validate	CDT 1	TEV 1	VDT 1		3	2	1/1/1970 12:00:01 AM	1	Stream 1		14.73	60	0.00	
Stream 4	1	Unused									Unused			60		
Stream 5	1	Unused									Unused	 ✓ ✓ 		60		
Stream 6	1	Unused									Unused			60		
Stream 7	1	Unused									Unused			60		
Stream 8	1	Unused									Unused	✓✓		60		
Stream 9	1	Unused									Unused			60		
Stream 10	1	Unused									Stream 1	Image: A start of the start		60		
Stream 11	1	Unused									Unused	Image: A start of the start		60		
Stream 12		Unused									Unused	Image: A start of the start		60		
Stream 13		Unused									Unused			60		
Stream 14	1	Unused									Unused	Image: A start of the start		60		
																۲

Figure 4-66. The Streams window

2. Go to the Stream Valve column for the corresponding stream and select the appropriate valve from the drop-down list.

Details about the values in the drop-down list can be viewed from the Values window.

- 3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.
- 4. To have the stream open when the valve is ON, select the corresponding *Stream Valve On to Select* checkbox; to have the stream open when the valve is OFF, clear the corresponding *Stream Valve On to Select* checkbox.

4.10.3 Assigning a data table to a particular stream

To assign a component data table, a validation data table, or a timed events table to a stream, do the following:

1. Select **Streams...** from the **Application** menu. The *Streams* window opens.

Figure 4-67. The Streams window

S Stream 6 1 Unused V 60 7 Stream 7 1 Unused V 60 9 Stream 8 1 Unused V 60 9 Stream 9 1 Unused V 60 0 Stream 10 1 Unused V 60 1 Stream 11 1 Unused V 60 1 Stream 12 1 Unused V 60 12 Stream 12 1 Unused V 60 13 Stream 13 1 Unused V 60 14 Stream 14 1 Unused V 60			Det #	Usage	CDT			Auto	Total Runs	Avg Runs	Start Time	Interval	Stream Valve	Stream Valve ON to Select	Base Pressure	Base Temp	Optional O Pressure 1 Pre
2 Stream 2 12 Analy CDT1 TEV1 V IEV1												HR			PSIA	DEGF	PSIA
3 Stream 3 1.2 Validate CDT 1 TEV 1 VDT 1 Image 3 2 1/1/1970 12:00:01 AM 1 Stream 1 V 14.73 60 0.00 4 Stream 5 1 Unused V 60 60 60 60 5 Stream 5 1 Unused V 600 0.00 60 <		Stream 1	1,2	Analy	CDT 1	TEV 1							Stream 1		14.73	60	0.00
4 Stream 4 1 Unused V 60 5 Stream 5 1 Unused V 60 6 Stream 5 1 Unused V 60 7 Stream 7 1 Unused V 60 9 Stream 8 1 Unused V 60 9 Stream 9 1 Unused V 60 9 Stream 9 1 Unused V 60 0 Stream 1 1 Unused V 60 10 Stream 10 1 Unused V 60 12 Stream 11 1 Unused V 60 12 Stream 12 1 Unused V 60 13 Stream 13 1 Unused V 60 14 Stream 14 1 Unused V 60		Stream 2	1,2	Analy	CDT 1	TEV 1							Stream 2	Image: A start of the start			0.00
Stream 6 1 Unused Image: Constraint of the stream for the stream fo		Stream 3	1,2	Validate	CDT 1	TEV 1	VDT 1		3	2	1/1/1970 12:00:01 AM	1	Stream 1		14.73	60	0.00
Stream 6 1 Unused Image: Constraint of the stream for the stream fo		Stream 4	1	Unused									Unused	 Image: A start of the start of		60	
7 Stream 7 1 Unused Image: Constraint of the co		Stream 5	1	Unused									Unused				
3 Stream 3 1 Unused Ø 60 0 Stream 10 1 Unused Ø 60 1 Stream 11 1 Unused Ø 60 2 Stream 12 1 Unused Ø 60 2 Stream 12 1 Unused Ø 60 3 Stream 13 1 Unused Ø 60 4 Stream 14 1 Unused Ø 60		Stream 6	1	Unused									Unused	Image: A start and a start		60	
3 Stream 3 1 Unused Ø 60 0 Stream 10 1 Unused Ø 60 1 Stream 11 1 Unused Ø 60 2 Stream 12 1 Unused Ø 60 2 Stream 12 1 Unused Ø 60 3 Stream 13 1 Unused Ø 60 4 Stream 14 1 Unused Ø 60		Stream 7	1	Unused									Unused			60	
I2 Stream 12 I Unused Ø0 3 Stream 13 1 Unused Ø0 4 Stream 14 1 Unused Ø0		Stream 8	1	Unused									Unused	V			
I2 Stream 12 I Unused Ø0 3 Stream 13 1 Unused Ø0 4 Stream 14 1 Unused Ø0		Stream 9	1	Unused									Unused	 Image: A set of the set of the		60	
I2 Stream 12 I Unused Ø0 3 Stream 13 1 Unused Ø0 4 Stream 14 1 Unused Ø0		Stream 10	1	Unused									Stream 1				
I3 Stream 13 I Unused Image: Contract of the stream 14 Image: Contract of the stream 14<		Stream 11	1	Unused									Unused	V			
14 Stream 14 1 Unused 🔽 60 60		Stream 12	1	Unused									Unused	Image: A start of the start		60	
	13	Stream 13	1	Unused									Unused				
E E E E E E E E E E E E E E E E E E E		Stream 14	1	Unused									Unused	 Image: A set of the set of the		60	
	-																•

- 2. For the appropriate stream, if *Usage* is set to **Cal** or **Analy**, select a component data table from the *CDT* column and a timed events table from the *TEV* column.
- 3. For the appropriate stream, if *Usage* is set to **Validate**, select a component data table from the *CDT* column, a timed events table from the *TEV* column, and a validation data table from the *VDT* column.

4. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.10.4 Changing the base pressure for a stream

To change the base pressure for a stream, do the following:

1. Select **Streams...** from the **Application** menu. The *Streams* window opens.

Figure 4-68. The Streams window

	Det #	Usage	CDT			Auto	Total Runs	Avg Runs	Start Time	Interval	Stream Valve	Stream Valve ON to Select	Base Pressure	Base Temp	Optional O Pressure 1 Pr
										HR			PSIA	DEGF	PSIA
Stream 1	1,2	Analy	CDT 1	TEV 1							Stream 1	>>>	14.73	60	0.00
Stream 2	1,2	Analy	CDT 1	TEV 1							Stream 2		14.73		0.00
Stream 3	1,2	Validate	CDT 1	TEV 1	VDT 1	1	3	2	1/1/1970 12:00:01 AM	1	Stream 1		14.73	60	0.00
Stream 4	1	Unused									Unused			60	
Stream 5	1	Unused									Unused			60	
Stream 6	1	Unused									Unused			60	
Stream 7	1	Unused									Unused	✓		60	
Stream 8	1	Unused									Unused			60	
Stream 9	1	Unused									Unused	> > > > >		60	
Stream 10		Unused									Stream 1			60	
Stream 11		Unused									Unused			60	
Stream 12	1	Unused									Unused			60	
Stream 13		Unused									Unused			60	
Stream 14	1	Unused									Unused			60	
															•

- 2. For the appropriate stream, double-click on the corresponding cell under the *Base Pressure* column and enter an new value.
- 3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.11 Creating a stream sequence for a detector

A stream sequence defines the order of stream analysis for a detector. To create or edit a stream sequence, do the following:

1. Select **Stream Sequence...** from the **Application** menu. The *Stream Sequence* window displays.

Label	Seq Activate DI	Seq Type		Seq of Strms
Sequence 1	Discrete Input 1	Analysis	1	
Sequence 2	Discrete Input 2	Analysis	1	
Sequence 3	Discrete Input 3	Analysis	1	

Figure 4-69. The Stream Sequence window

- 2. Each stream sequence table can contain up to three sequences--a primary, or default, sequence, and two auxiliary sequences. The table for detector that is designated as "1" displays by default. To display a different table, select it from the *Choose table*: drop-down list.
- 3. To create a new stream sequence, click **Insert before**.

Note

There can only be three sequences per detector. If a detector already has three sequences and you want to create a new one, you must edit or delete one of the existing sequences. Click Delete to delete a sequence.

- 4. Double-click the appropriate cell under the *Strm Seq Name* column to give your new sequence a name, or to edit the name of an existing sequence. Type in the new name.
- 5. To define the order of analysis, double-click the appropriate cell under the *Seq of Strms* column and the numbers for the streams, seperated by commas, that should be analyzed.
- 6. To define which discrete input should activate the sequence, select it from the drop-down list of the appropriate cell under the *Seq Activate DI* column.

Note

No two sequences can be activated by the same discrete input.

- 7. Select the type of analysis the detector should perform when following the sequence. There are two options:
 - Analysis The detector performs a real analysis of the streams.
 - **Validation** The detector performs a test analysis to verify that it is working properly.
- 8. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

4.12 Communications

Use this function to configure and manipulate the communication settings the GC uses to connect with a Data Collection System (DCS).

To add a new communications port setting to the *Communication* window, click **Insert before**. A new row will be added to the *Communication* table.

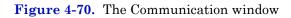
The following table lists the parameters that can be edited for the communications port setting:

Name	Description					
Label	The name of the group of settings.					
ModBus Id	Identification number of the ModBus device.					
Baud Rate	The baud rate setting. Options are: 1200 , 2400 , 9600 , 19200 , 38400 , and 57600 . For high performing PCs, set the baud rate to 38400 . If you experience a communications failure at this rate, set the baud rate to 9600 . Baud rate settings less than 9600 may result in real-time delivery that is unacceptably slow.					
Data Bits	The number of data bits. Options are 7 and 8 (default).					
Stop Bit	The number of stop bits. Options are 1 (default) and 2 .					
Parity	The parity check method. Options are None (default), Even and Odd .					
HW Flow Cntrl	Allows you to enable or disable hardware handshaking signals (RTS/CTS).					

MON20/20 Software for Gas Chromatographs SEPTEMBER 2010

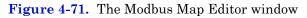
RTS Off Dly	The delay in milliseconds between RTS termination and the end of data transmission. Range: 0 to 1000
RTS ON Sly	The delay in milliseconds between RTS activation and the start of data transmission Range: 0 to 1000
Port Resp Dly	The delay in milliseconds the communication port will wait before sending a response back to device. Range: 0 to 100
Port Avail	Allows you to enable or disable the communication port.
Timeout	The time interval in seconds within which the GC is required to read the response from device.
Unit System	Sets the type of measurement system to use. Options are U.S. Customary or Metric .
MAP File	Points to the file that contains the registers that should be used.
Port	Allows you to set the type of protocol to be used for the port: RS232 , RS422 or RS485 . If the port is set to RS422 or RS485, additional configuration steps are required; see your GC manual for more information

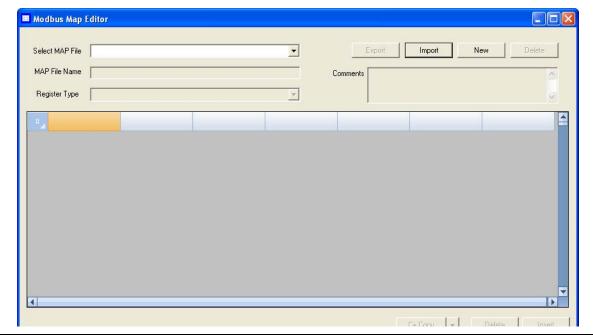
To delete a communications port setting from the *Communication* window, click **Delete**. A selected row will be deleted from the *Communication* table.


4.12.1 Creating or editing registers

You can map GC data to Modbus registers and generate MAP files, which can then be associated with communications ports.

For a list of variable assignments made to all registers, consult the Communication section of the PC Config Report.


To map GC data to Modbus registers, do the following:


1. Select **Communication...** from the **Application** menu. The *Communication* window appears.

Label	ModBus Id	Baud Rate	Data Bits	Stop Bit	Parity	HW Flow Cntrl		RTS ON Dly	Port Resp Dly	Timeout	MAP Fil
		BITS/SEC		a 9.6			MSEC	MSEC	MSEC	SEC	
Comm 1	32	9600	8	1	None	10	0	0	0	4 SI	1_2251
Comm 2	32	9600	8	1	None	100 C	0	0	0	4 SI	4_2251
Comm 3	32	9600	8	1	None	100	0	0	0	4 SI	1_2251
Comm 4	32	9600	8	1	None	100	0	0	0	4 SI	4_2251
TCPIP Port	32									Us	er

2. Click Registers. The Modbus Map Editor window appears.

3. To view or edit registers that are contained in an existing MAP file, click on the *Select MAP File* drop-down list and select the appropriate file. The registers will load into the table.

Select MAP File	1	<u> </u>		Export Import	New	Delete	
MAP File Name	UsrMap		Comments	Comment		~	
Register Type	User_Modbus					×	
Hegiste							
Numbe	3001 FLOAT	1 - Stream 1 Component.Mole %.PROPANE	RD ONLY				
	3001 FLOAT	1 - Stream 1 Component.Mole & PRUPANE 1 - Stream 1 Component.Mole %.i-BUTANE	RD_ONLY				
	3005 FLOAT	1 - Stream 1 Component.Mole %.n-BUTANE	RD_ONLY				
	3007 FLOAT	1 - Stream 1 Component.Mole %.NEOPENTANE	RD_ONLY				
	3009 FLOAT	1 - Stream 1 Component.Mole %.ivEOPENTANE	RD_ONLY				
	3011 FLOAT	1 - Stream 1 Component.Mole %.n-PENTANE	RD ONLY				
	3013 FLOAT	1 - Stream 1 Component.Mole %.NTROGEN	RD ONLY				
	3015 FLOAT	1 - Stream 1 Component Mole & METHANE	RD_ONLY				
	3017 FLOAT	1 - Stream 1 Component.Mole %.CARBON DIOXIDE					
	3019 FLOAT	1 - Stream 1 Component.Mole %.ETHANE	RD_ONLY				
	3021 FLOAT	1 - Stream 1 Component.Mole %.n-NONANE	RD ONLY				
	3023 FLOAT	1 - Stream 1 Component Mole % n-HEXANE	RD_ONLY				
	3025 FLOAT	1 - Stream 1 Component. Mole %.n-HEPTANE	RD_ONLY				
	3027 FLOAT	1 - Stream 1 Component.Mole %.n-OCTANE	RD_ONLY				
	3029 FLOAT	1 - Stream 1 Component. Mole %. H2S	RD_ONLY				
	3031 FLOAT	Heaters. Temperature. Heater 1	RD ONLY				
(viii					Þ	
10							
				C+ Copy	Delete	Insert	

Figure 4-72. The Modbus Map Editor window

Name	Description
Register Number	Displays the number for the Modbus register that will be polled by a connected data acquisition system.
Data Type	Describes the type of data that is stored in the register. SIM_2251 and User_Modbus options are: • BOOLEAN • INT • LONG • FLOAT • Bitmap(INT) • Bitmap(LONG) • SCALED_FP1 • SCALED_FP32 If one of the scaled floating point options is chosen, the Zero Scale and Full Scale values for that option will display in the appropriate column cells. The default User_Modbus data type is FLOAT, which means the value is not converted to an integer and is stored in two adjacent registers. Data types other than FLOAT require only one register per variable.
Variable(s)	Displays the variable(s) whose value is to be stored in the register. To change the variable, see "Assigning a variable to a register" on page 4-92.
Access	Determines whether the register will be read-only (RD_ONLY) or read/write (RD_WR).

4. To edit a cell, double-click it. You can edit the following parameters:

- 5. To copy the component settings from a highlighted row and apply them to the next row, click **C** + **Copy**. This feature also increments the Component value to the next available component (e.g., incrementing from Ammonia to Benzene), per the GC application. An error message displays when the last available component is reached.
- 6. To copy the stream settings from a highlighted row and apply them to the next row, click S + Copy. This feature also increments the Stream value to the next available stream (e.g., incrementing from Stream 2 to Stream 3), per the GC application. An error message displays when the last available stream is reached.
- 7. To delete a row, click **Delete**.
- 8. To insert a row, click **Insert**.

9. To check for conflicting register assignments, click **Check**. MON 20/20 will check the table and if it encounters a conflict it will display the following message:

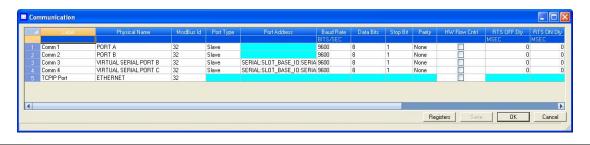
Figure 4-73. Conflicting registers warning

Review the table to locate the conflicting registers and change one.

- 10. To save the MAP file, do the following:
 - (a.) Click Export. MON 20/20 validates the table for errors--for instance, ensuring that no two registers share a register number. If any errors are found MON 20/20 displays the appropriate error message. When no errors are found, the *Save As* window displays.

Figure 4-74. The Save As window

Save As				?
Save in:	🗀 Austin	•	- 🗧 💣 🎟	•
My Recent Documents Desktop My Documents	FTP simtest.txt UsrMap.txt			
My Computer				
My Network Places	File name:		•	Save
	Save as type:	Map Files (*.txt)	-	Cancel


- (b.) Enter a new name for the file or select the file that you want to overwrite.
- (c.) Click Save.

4.12.2 Creating a new map file

To create a new MAP file, do the following:

1. Select **Communication...** from the **Application** menu. The *Communication* window appears.

Figure 4-75. The Communication window

2. Click Registers. The Modbus Map Editor window appears.

Modbus Map Editor				
Select MAP File	•	Export Import	New	Delete
MAP File Name	с	omments		<u>^</u>
Register Type	¥			~
*				
		С+ Сору. 👻	Delete	Insert
		Edit Scales Check.	ОК	Cancel
				11.

Figure 4-76. The Modbus Map Editor window

3. Click **New**. A new row will be added to the table and the column headings will be empty.

Select MAP File	-	Export	Import New	Delete
MAP File Name		Comments		
Register Type	<u>*</u>			
1				

Figure 4-77. The Modbus Map Editor window

 From the *Register Type* drop-down list, select the type of PLC emulation protocol you want to use. You have two options: User_Modbus, which is a PLC emulation Modbus protocol that can use scaling to convert floating point numbers to integers, and SIM_2251, which emulates the Daniel 2500 communication protocol and is a simulation of the 2251 GC controller.

The table's column headers change based on which protocol is selected.

5. If you want to base the new MAP file on an existing MAP file, do the following:

(a.) Click Import. The Open window displays.

Open					?
Look in:	🗀 Austin		•	+ 🗈 💣 🎟-	
My Recent Documents	FTP Simtest.txt UsrMap.txt				
Desktop					
My Documents					
My Computer					
My Network Places	File name: Files of type:	Map Files (*.txt)		•	Open Cance

Figure 4-78. The Open window

(b.) Select the file that you want to import and click **Open**. The registers from the selected file will load into the table.

Figure 4-79. The Modbus Map Editor

Select MAP File			Export Import New	Delete		
MAP File Name	UsrMap		Comments Comment			
Register Type	User_Modbus	•		\sim		
Hegoter Number	- Nettoin:					
	01 FLOAT	1 - Stream 1 Component.Mole %.PROPANE	RD_ONLY			
30	03 FLOAT	1 - Stream 1 Component.Mole %.i-BUTANE	RD_ONLY			
30	05 FLOAT	1 - Stream 1 Component.Mole %.n-BUTANE	RD_ONLY			
30	07 FLOAT	1 - Stream 1 Component.Mole %.NEOPENTANE	RD_ONLY			
30	09 FLOAT	1 - Stream 1 Component.Mole %.i-PENTANE	RD_ONLY			
30	11 FLOAT	1 - Stream 1 Component.Mole %.n-PENTANE	RD_ONLY			
30	13 FLOAT	1 - Stream 1 Component.Mole %.NITROGEN	RD_ONLY			
30	15 FLOAT	1 - Stream 1 Component.Mole %.METHANE	RD_ONLY			
30	17 FLOAT	1 - Stream 1 Component.Mole %.CARBON DIOXIDE	RD_ONLY			
30	19 FLOAT	1 - Stream 1 Component.Mole %.ETHANE	RD_ONLY			
30	21 FLOAT	1 - Stream 1 Component.Mole %.n-NONANE	RD_ONLY			
30	23 FLOAT	1 - Stream 1 Component.Mole %.n-HEXANE	RD_ONLY			
30	25 FLOAT	1 - Stream 1 Component.Mole %.n-HEPTANE	RD_ONLY			
30	27 FLOAT	1 - Stream 1 Component.Mole %.n-OCTANE	RD_ONLY			
30	29 FLOAT	1 - Stream 1 Component.Mole %.H2S	RD_ONLY			
30	31 FLOAT	Heaters. Temperature. Heater 1	RD ONLY			

Name	Description
Register Number	Displays the number for the Modbus register that will be polled by a connected data acquisition system.
Data Type	Describes the type of data that is stored in the register. SIM_2251 registers use only one data type: FLOAT. User_Modbus options are: • BOOLEAN • INT • LONG • FLOAT • Bitmap(INT) • Bitmap(LONG) • SCALED_FP1 • SCALED_FP32 If one of the scaled floating point options is chosen, the Zero Scale and Full Scale values for that option will display in the appropriate column cells. The default User_Modbus data type is FLOAT, which means the value is not converted to an integer and is stored in two adjacent registers. Data types other than FLOAT require only one register per variable.
Variable(s)	Displays the variable(s) whose value is to be stored in the register. To change the variable, see "Assigning a variable to a register" on page 92.
Access	Determines whether the register will be read-only (RD_ONLY) or read/write (RD_WR).

6. To edit a cell, double-click it. You can edit the following parameters:

- 7. To copy the component settings from a highlighted row and apply them to the next row, click **C** + **Copy**. This feature also increments the Component value to the next available component (e.g., incrementing from Ammonia to Benzene), per the GC application. An error message displays when the last available component is reached.
- 8. To copy the stream settings from a highlighted row and apply them to the next row, click **S** + **Copy**. This feature also increments the Stream value to the next available stream (e.g., incrementing from Stream 2 to Stream 3), per the GC application. An error message displays when the last available stream is reached.
- 9. To delete a row, click **Delete**.
- 10. To insert a row, click **Insert**.

11. To check for conflicting register assignments, click **Check**. MON 20/20 will check the table and if it encounters a conflict it will display the following message:

Figure 4-80. Conflicting registers warning

Review the table to locate the conflicting registers and change one.

- 12. To save the MAP file, do the following:
 - (a.) Click Export. MON 20/20 validates the table for errors--for instance, ensuring that no two registers share a register number. If any errors are found MON 20/20 displays the appropriate error message. When no errors are found, the *Save As* window displays.

Figure 4-81. The Save As window

Save As					?
Save in:	C Austin		•	+ 🗈 💣 🎟 -	
My Recent Documents	FTP Simtest.txt UsrMap.txt				
Desktop My Documents					
My Computer					
My Network	File name:			•	Save
Places	File name: Save as type:	Map Files (*.txt)			Cancel

- (b.) Enter a new name for the file or select the file that you want to overwirte.
- (c.) Click Save.

4.12.3 Assigning a variable to a register

To assign a variable to a register, from the *Modbus Map Editor* window, double-click the appropriate *Variable(s)* cell and select a new variable.

For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

4.12.4 Viewing or editing scales

Scales allow you to use one register to store floating point variables instead of the customary two registers. By using a scale, floating point data can then be converted to integer values.

MON 20/20 supports 32 different scales that are labelled **SCALED_FP1** through **SCALED_FP32**. The *Data Type* column on the *Modbus Map Editor* window displays the type of scale, if any, that is being used for a particular register. If a scale is being used, the *Zero Scale* and *Full Scale* columns will display the lower and upper values for the chosen scale.

To view the list of scales, select **Application** \rightarrow **Communication**... \rightarrow **Registers** and click **Edit Scales** from the *Modbus Map Editor* window. The *Edit Scales* window displays all of the scales, along with each scales lower and upper values.

	Variable	Zero Scale	Full Scale
1	Range	0	65535
2	SCALED_FP1	0.00	100.00
3	SCALED_FP2	0.00	1.00
4	SCALED_FP3	0.00	2.00
5	SCALED_FP4	0.00	5.00
6	SCALED_FP5	0.00	10.00
7	SCALED_FP6	0.00	20.00
8	SCALED_FP7	0.00	30.00
9	SCALED_FP8	0.00	40.00
10	SCALED_FP9	0.00	50.00
11	SCALED_FP10	0.00	60.00
12	SCALED_FP11	0.00	70.00
13	SCALED_FP12	0.00	80.00
14	SCALED_FP13	0.00	90.00
15	SCALED_FP14	0.00	120.00
16	SCALED_FP15	0.00	200.00
4	1		

Figure 4-82. The Edit Scales window

Use the following formula to calculate the variable's integer value:

integer =
$$\left(\frac{R_F - R_Z}{S_F - S_Z}\right)(D_{fp} - S_Z) + R_Z$$

where:

 R_F = Full Scale, range R_Z = Zero Scale, range S_F = Full Scale, scale S_Z = Zero Scale, scale

 D_{fp} = Floating Point value

For example:

$$\begin{split} R_F &= 65535 \\ R_Z &= 0 \\ S_F &= 100 \; (\text{from SCALED_FP1}) \\ S_Z &= 0 \; (\text{from SCALED_FP1}) \\ D_{fp} &= 97.13 \; (\text{scaled percent for methane}) \end{split}$$

$$63654 = \left(\frac{65535 - 0}{100 - 0}\right)(97.13 - 0) + 0$$

To edit or create your own scale, do the following:

1. Select Application \rightarrow Communication... \rightarrow Registers and click Edit Scales from the *Modbus Map Editor* window.

Figure 4-83. The Ed	lit Scales window	r
---------------------	-------------------	---

	Variable	Zero Scale	Full Scale
1	Range	0	65535
2	SCALED_FP1	0.00	100.00
3	SCALED_FP2	0.00	1.00
4	SCALED_FP3	0.00	2.00
5	SCALED_FP4	0.00	5.00
6	SCALED_FP5	0.00	10.00
7	SCALED_FP6	0.00	20.00
8	SCALED_FP7	0.00	30.00
9	SCALED_FP8	0.00	40.00
10	SCALED_FP9	0.00	50.00
11	SCALED_FP10	0.00	60.00
12	SCALED_FP11	0.00	70.00
13	SCALED_FP12	0.00	80.00
14	SCALED_FP13	0.00	90.00
15	SCALED_FP14	0.00	120.00
16	SCALED_FP15	0.00	200.00
1			

- 2. Double-click on the appropriate cell and enter a new value.
- 3. To save the changes and close the window, click **OK**.

4.13 Configuring the gas chromatograph's Ethernet port

The 700XA has two ethernet ports that can be used to connect the GC with MON 20/20.

To configure one or both ethernet ports, select **Ethernet Ports...** from the **Application** menu. The **Ethernet Ports** window displays.

Figure 4-84. The	Ethernet Ports window	
	Ethernet Ports	
	Eth0 IP Address 155.176.59.24 Eth0 Mask 255.255.255.05 Eth1 IP Address 172.16.17.252 Eth1 Mask 255.255.255.05 Gateway 155.176.59.1	
	Save 0	K Cancel

The following table describes the ethernet ports' parameters:

Eth0 IP Address	IP address to use to connect to the GC at port Eth0.
Eth0 Mask	Subnet mask for the IP address at port Eth0.
Eth1 IP Address	IP address to use to connect to the GC at port Eth1.
Eth1 Mask	Subnet mask for the IP address at port Eth1.
Gateway	Default gateway address for the network.

4.14 Working with local operator interface variables

Use this window to select and configure up to 25 GC parameters that you would like to monitor using the LOI's *Display* mode. Refer to the *700XA Gas Chromatograph System Reference Manual* (P/N# 3-9000-744) for more information about the LOI.

To set an LOI parameter, do the following:

1. Select LOI Status Variables... from the Application menu. The *LOI Status Variables* window appears.

		Precision	
1	System Variable 1 - Stream 1 Component, Resp Fact, C6+ 47/35/17	4	
2	1 - Stream 1 Component.Resp Fact.PROPANE	4	
3	1 - Stream 1 Component Resp Fact i BUTANE	4	
4	1 - Stream 1 Component.Resp Fact.n-BUTANE	4	
5	1 - Stream 1 Component.Resp Fact.i-PENTANE	4	
6	1 - Stream 1 Component.Resp Fact.n-PENTANE	4	
7	1 - Stream 1 Component.Resp Fact.NITROGEN	4	
8	1 - Stream 1 Component.Resp Fact.METHANE	4	
9	1 - Stream 1 Component.Resp Fact.CARBON DIOXIDE	4	
10	1 - Stream 1 Component.Resp Fact.ETHANE	4	
11	1 - Stream 1.Gross Dry BTU	4	
12	1 - Stream 1.Unnormalized Mole %	4	
13	User Defined Calculations.Calc Result.User Cal 01	4	
14	User Defined Calculations.Calc Result.User Cal 02	✓ 4	
12 13	1 - Stream 1.Unnormalized Mole % User Defined Calculations.Calc Result.User Cal 01	4	

Figure 4-85. The LOI Status Variables window

2. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

Note

If Include Mole Percents for current stream is checked, the maximum number of variables you can select is five; if Include Mole Percents for current stream is not checked, you can choose up to 25 variables.

- 3. To copy the stream settings from a highlighted row and apply them to the next row, click **S** + **Copy**. This feature also increments the *Stream* value to the next available stream—for instance, incrementing from Stream 2 to Stream 8, per the GC application.
- 4. To copy the component settings from a highlighted row and apply them to the next row, click **C** + **Copy**. This feature also increments the *Component* value to the next available component—incrementing from Ammonia to Benzene, per the GC application.
- Enter a value in the *Precision* column to indicate the number of decimal places to display for this particular variable. For component concentrations, the range of possible Precision values is between 2 and 6. For all other variables, the range of possible values is between 0 and 6.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

To map a GC variable to a Foundation Fieldbus process variable (PV), do the following:

1. Select **FFB PV Mappings...** from the **Application** menu. The *FFB PV Mappings* window displays.

Figure 4-86. The FFB PV Mappings window

	Name	Variable	Date/Time Format	PV Value	PV Status
PVI	01				0 Bad
PVI	02				0 Bad
PVI	03				0 Bad
PVI	04				0 Bad
PVI	05				0 Bad
PVI					0 Bad
PVI	07				0 Bad
PVI					0 Bad
PVI					0 Bad
) PV					0 Bad
PV'					0 Bad
2 PV					0 Bad
3 PV					0 Bad
4 PV					0 Bad
5 PV					0 Bad
PV1					0 Bad
7 PV	17				0 Bad

2. Select a new variable by clicking on the appropriate drop-down list under the *Variable* column. For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

Note

The $PV\,Value$ column displays the current value of the GC variable indicated in the Variable column.

Note

The *PV Status* column indicates the state of the data displayed in the *PV Value* column. If the data was generated under predictable conditions, then the status for all mapped process variables will be **Good**; if the data was generated under unpredictable conditions—that is, if any alerts were triggered during the analysis cycle—then the status for all mapped process variables will be **Bad**, because the GC cannot guarantee the results of the analysis.

- 3. To copy the stream settings from a highlighted row and apply them to the next row, click **S** + **Copy**. This feature also increments the *Stream* value to the next available stream—for instance, incrementing from Stream 2 to Stream 8, per the GC application.
- To copy the component settings from a highlighted row and apply them to the next row, click C + Copy. This feature also increments the *Component* value to the next available component—incrementing from Ammonia to Benzene, per the GC application.
- 5. If necessary, enter a date or time format into the *Date/Time Format* column.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

This page is intentionally left blank.

Section 5: Logs and reports

Logs/Reports	Cont <u>r</u> ol	<u>T</u> ools	⊻iew	Help
Aļarms				•
<u>M</u> aintenanc	e Log			
P <u>a</u> rameter L	.ist			
<u>D</u> rawings/D	ocuments.			
Event Log				
<u>R</u> eport Disp	lay			
Ar <u>c</u> hive Rep	ort			•
Printer Cont	rol			
<u>T</u> rend Data.				
<u>G</u> C Config R	leport			
Re <u>s</u> et Archi [,]	ve Data			
Molecular <u>W</u>	<u>/</u> t. Vs Resp	oonse F	actor	

The options in the Logs/Reports menu allow you to do the following:

- •Keep a maintenance record.
- •Keep a parameter record.
- View alarm, system and event logs.
- •View and print trend data.
- View the GC Config report.
- View relevants drawings and diagrams.

• View archived analysis, calibration and averages reports.

• Configure how and when certain reports are printed.

5.1 Viewing and clearing alarms

Unack/Active Alarms... Alarm Log... Clear/Ack All Active Alarms Use this menu to view and/or clear unacknowledged and active alarms, as well as to view the Alarm Log.

5.1.1 Viewing unacknowledged and active alarms

To view unacknowledged and active alarms, select **Logs/Reports** \rightarrow **Alarms** \rightarrow **Unack/Active Alarms...** The *Unack/Active Alarms* window displays.

Figure 5-1	The Unack/Active Alarms	window
rigule 0-1.	The Onach neuvernarms	willuow

Status	State	Date	Alarm Message	Туре	Limit	Value	Name
	INACTIVE		Out of Range				Heaters.Status.Heater 4
nAck	INACTIVE	12/10/2009 10:05:30 AM		LOW	44.000000	43,980999	Heaters. Temperature. Heater 4
nAck	ACTIVE	12/9/2009 9:46:03 PM	Response Factor is Out of Limit				2 - Calibration Final Calib.RF Dev Alarm
nAck	INACTIVE	12/8/2009 9:05:34 AM	Analysis Idle				GC Status.Cur State
nAck	ACTIVE	12/8/2009 9:05:34 AM	Failure				GC Status.Warmup Status
nAck	INACTIVE	12/8/2009 7:04:43 AM	Out of Range				Heaters.Status.Heater 1

Note

Double-clicking on the GC Status Bar from the main window also displays the Unack/ $Active\ Alarms$ window.

There are three display options for viewing alarms on this window:

- To view both unacknowledged alarms and active alarms, check All Alarms.
- To view unacknowledged alarms only, check **Unacknowledged Alarms**.

• To view active alarms only, check **Active Alarms**. This is the default display option.

The *Unack/Active Alarms* window supplies the following data for each alarm:

Name	Description
Status	Indicates whether the alarm has been acknowledged or not.
State	Indicates whether the alarm is ACTIVE or INACTIVE .
Date	Indicates the date and time at the GC when the alarm condition began.
Alarm Message	Describes the alarm condition.
Туре	 Indicates whether a high limit or low limit alarm was trigger: HI means a high limit alarm was triggered. LO means a high limit alarm was triggered.
Limit	Indicates the value that was set as the trigger for the alarm.
Value	Indicates the current status value being output by the device.
Name	Indicates the name of the variable that triggered the alarm.

Note

Discrete alarms do not display Type, Limit, or Value data.

5.1.2 Acknowledging and clearing alarms

There are three ways to acknowledge and clear alarms:

- To acknowledge and clear alarms without viewing them, select Logs/ Reports \rightarrow Alarms \rightarrow Clear/Ack All Active Alarms.
- Another method to acknowledge and clear alarms without viewing them is to click
 from the Toolbar.
- To view the alarms before acknowledging and clearing them, select Logs/Reports → Alarms → Unack/Active Alarms.... The Unack/ Active Alarms window provides several options:
 - To acknowledge an alarm, select it and then click Ack Selected (F2).

Note

An alarm triggered by a user-defined value will continue to display as an active alarm until that value is no longer in the alarm state.

- To acknowledge all the alarms displayed on the window, click Ack All (F3).
- To acknowledge all the alarms displayed on the window and then remove them from the table, click **Clear/Ack All (F4)**.

Note

If an alarm is cleared before the condition has been resolved, MON 20/20 redisplays the alarm entry as an active alarm.

5.1.3 Viewing the alarm log

The Alarm Log records every alarm triggered from the GC. The *Alarm Log* window gives you the option of viewing the total list of alarms, or a date-filtered list.

To view the Alarm Log, select **Logs/Reports** \rightarrow **Alarms** \rightarrow **Alarm Log**.... The *Alarm Log* window displays.

Figure 5-2.	The Alarm Log window
-------------	----------------------

rm Log record selectio All Select Range Start Date: End Date: Read Records	9/18/2009 <u>*</u> 12/10/2009 *							
Date Time	Alarm Message	Status	Туре	Limit	Value	Unit	Name	User.

The *Alarm Log* window supplies the following data for each alarm:

Name	Description
Date	Indicates the date and time at the GC when the alarm condition began.
Alarm Message	Describes the alarm condition.
Status	Indicates whether the alarm is SET (active) or CLR (inactive).
Туре	 Indicates whether a high limit or low limit alarm was trigger: High means a high limit alarm was triggered. Low means a high limit alarm was triggered.
Limit	Indicates the value that was set as the trigger for the alarm.
Value	Indicates the current status value being output by the device.
Unit	If applicable, unit of measurement for the displayed values.
Name	Indicates the name of the variable that triggered the alarm.
User	Indicates which user made the change.

Note

Discrete alarms do not display Type, Limit, or Value data.

To view a list of alarms, do the following:

- 1. To view all alarms, select the *All* checkbox. Otherwise, select the *Select Range* checkbox and use the *Start Date* and *End Date* drop-down boxes to select a date range.
- 2. Click **Read Records**. The list of alarms display with the most recent alarm at the top and the oldest alarm at the bottom. The alarms are also sorted and color-coded by time so that alarms that occurred simultaneously are grouped together.

Figure 5-3. The Alarm Log window

Alarm Log record selection								
C Select Range								
-								
Start Date: 9/18/2009	<u> </u>							
End Date: 12/10/2009	-							
Read Records								
Date Time Alarm Message	Status	Type	Limit	Value	Unit	Name		User
2/10/2009 2:07:14 PM Out of Range	CLR			0		Heaters Status Heater 4		
2/10/2009 2:06:44 PM Out of Range	SET					Heaters.Status.Heater 4		
/10/2009 12:55:09 PM Out of Range	CLR					Heaters.Status.Heater 4		
2/10/2009 12:54:39 PN Out of Range	SET					Heaters.Status.Heater 4		
/10/2009 10:48:02 AN Out of Range	CLR					Heaters.Status.Heater 4		
2/10/2009 10:47:32 AN Out of Range	SET					Heaters.Status.Heater 4		
2/10/2009 10:06:00 AN	CLR	Low	44	44.766	DEGC	Heaters.Temperature.Heater 4		
2/10/2009 10:06:00 AN Out of Range	CLR					Heaters.Status.Heater 4		
/10/2009 10:05:30 AN	SET	Low	44	43.981	DEGC	Heaters. Temperature. Heater 4		
2/10/2009 10:05:30 AN Out of Range	SET					Heaters.Status.Heater 4		
/10/2009 10:03:30 AN Out of Range	CLR					Heaters.Status.Heater 4		
/10/2009 10:03:00 AN Out of Range	SET					Heaters.Status.Heater 4		
/10/2009 8:51:56 AM_Out of Range	CLR					Heaters.Status.Heater 4		
2/10/2009 8:51:26 AM Out of Range	SET					Heaters.Status.Heater 4		
2/10/2009 8:50:26 AM	CLR	Low	44	44.853	DEGC	Heaters.Temperature.Heater 4		
2/10/2009 8:50:26 AM_Out of Range	CLR					Heaters.Status.Heater 4		
2/10/2009 8:49:56 AM	SET	Low	44	43.987	DEGC	Heaters.Temperature.Heater 4		
							Save	Close
								CIOSC

- 3. To save the list, click **Save**. The list can be saved in the following formats:
 - Tab-Delimited (.txt)

- Comma-Delimited (.csv)
- Microsoft Excel (.xls)
- HTML File (.html)
- XML File (.xml)
- 4. To close the window, click **Close**.

5.2 Viewing the maintenance log

Use this function to manually record and track maintenance activities performed on a given GC unit.

To view the maintenance log, select **Maintenance Log...** from the **Log/Reports** menu.

Figure 5-4. The Maintenance Log window

🖬 Maint	enance Log		
Mainten	iance Log		
	Date	Message	
1	1/1/1970 12:00:00 AM		
	1/1/1970 12:00:00 AM		
8	1/1/1970 12:00:00 AM		
		Delete Ins	ert At Top
		Save OK	Cancel

5.2.1 Adding an Entry to the Maintenance Log

To add an entry to the maintenance log, do the following:

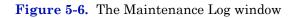
1. Select Maintenance Log... from the Log/Reports menu. The Maintenance Log window displays.

Figure 5-5. The Maintenance Log window

	Mai	ntenance Log		
	Maint	enance Log		
		Date	Message	
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
	8	1/1/1970 12:00:00 AM		
18				
			Delete Inse	ert At Top
			Save CK	Cancel
				11.

- 2. Click **Insert At Top**. A new row appears on the maintenance log table. The *Date* field contains the GC's current date and time, and is editable.
- 3. Double-click the *Message* cell and enter the relevant information for the log entry.

NOTE: To edit an old log entry, click on it and the cell will become editable.


4. To save the changes and keep the window open, click **Save**. To save the changes and close the window, click **OK**.

Note

5.2.2 Deleting an entry from the maintenance log

To delete an entry from the maintenance log, do the following:

1. Select Maintenance Log... from the Log/Reports menu. The Maintenance Log window displays.

	Main	itenance Log		
1	Mainte	enance Log		
		Date	Message	
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
		1/1/1970 12:00:00 AM		
	8	1/1/1970 12:00:00 AM		
12				
			Delete	Insert At Top
			Save	Cancel
-				11.

- 2. Select the entry that you want to delete.
- 3. Click **Delete**. The entry is removed from the maintenance log.
- 4. To save the changes and keep the window open, click **Save**. To save the changes and close the window, click **OK**.

5.3 Working with the parameter list

Use this feature to keep a record of the hardware components and associated parameters for a given GC.

The Parameter List is a Microsoft Excel document that can be viewed and edited from MON 20/20. Before attempting to edit the document, be sure to review it first to get an idea of what sorts of data it contains.

The Parameter List may contain one or all of the following pages:

- Cover Sheet
- TE Rework
- App Data
- Programming
- Strm Data
- Col Data
- Cal Std Data

5.3.1 Viewing and editing the parameter list

To view and edit the Parameter List, do the following:

1. Select **Parameter List...** from the **Logs/Reports** menu. The *Parameter List* window displays.

24	A	В	С	D	E	F	G	
1	NAME	DIV	Cust #	Date Rec'd	Date Entered	Entered By	Engr. Rec'd	D
2	DOE AND DOE	RAI	272025.00000	11/07/2008	11/21/2008	LCF/HEDG	11/21/2008	
	Applicatio	on Works	sheet					
3								
				CURRENT DATE				
				OF PRINT OUT	06/02/2009			
4	NEED DATE :	03/13/2009						
5	SALES CHANNEL:	RAI						
6	CUSTOMER NAME:							
7	CUSTOMER NUMBER:	272025.00000						
8			TITLE:	DEBUTANIZ	ER BOTTO	VIS		
9	END USER IF KNOWN:	DOE REFINERY						
10	USER LOCATION:	BENICIA	CA	USA				
11				TAG	: 48A110			
12	P.O. #:	37143.00000						
13	DATE RECORDED:			PRINT NUMBERS				
14	QUOTE # :			FLOW CONFIG				
15		216602-2			CE-24392			
16	SPECIAL NOTES : MODEL # :			SYSTEM WIRING	DE-18326			
17 18	ANALYZER P/N:		 202	P/N IF LINE ITEN	4 1 5019 325			
19		Refinery			1-5015-525			
20	APPLICATION:							
21	 D. Sakowi - Address a previously set 		000					
22	APPROVALS:							
23	E/S	JL, DT	DATE	01/07/2009				
24	ENGINEERING	LF GP	DATE	01/07/2009				
25 26	LAB TECH.	GP	DATE	01/07/2009	PLEASE INIT			-
77.7							ALL NEEDE	
	UVER I LE REWURK			JATA CUL DA				
		Import	Export		Save	ОК		
							Car	ncel

Figure 5-7. The Parameter List window

- 2. Make your changes to the Parameter List.
- 3. To save the changes and keep the window open, click **Save**. To save the changes and close the window, click **OK**.

5.3.2 Importing and exporting the parameter list

The Parameter List is a Microsoft Excel document and is therefore saved with the .xls extension.

To import a Parameter List, do the following:

1. Select **Parameter List...** from the **Logs/Reports** menu. The *Parameter List* window displays.

Figure 5-8. The Parameter List window

🔳 Pa	rameter List						
				945 M			
2	4A	В	C	D	E	F	G
1	NAME	DIV	Cust #	Date Rec'd	Date Entered	Entered By	Engr. Rec'd Da
2	DOE AND DOE	RAI	272025.00000	11/07/2008	11/21/2008	LCF/HEDG	11/21/2008
	Application	on Works	heet				
3							
J							
				CURRENT DATE OF PRINT OUT	06/02/2009		
4	NEED DATE :	03/13/2009		VI PRIMI VUI	00/02/2009		
4	SALES CHANNEL:						
6	CUSTOMER NAME:						
7	CUSTOMER NUMBER:						
8			TITLE:	DEBUTANIZI	ER BOTTON	NS	
9	END USER IF KNOWN:	DOE REFINERY					
10	USER LOCATION:	BENICIA	CA	USA			
11				TAG:	48A110		
12	P.O. #:	37143.00000					
13	DATE RECORDED:			PRINT NUMBERS			
14	QUOTE #:			FLOW CONFIG:			
15		216602-2		SYSTEM WIRING:	CE-24392		
16	SPECIAL NOTES : MODEL #:	500.00000		STSTEM WIRING.	DE-10320		
18	ANALYZER P/N:		SC	S P/N IF LINE ITEM	1-5019-325		
19		Refinery					
20	APPLICATION:						
21	40000011410						
22	APPROVALS: E/S		DATE	01/07/2009			
23	ENGINEERING		DATE	01/07/2009			
25	A/E		DATE	01/07/2009			
26	LAB TECH.		DATE		PLEASE INITI	AL & DATE	ALL NEEDED E
14	COVER _ TE REWORK	APP DATA PROGE	RAMMING <u>STRM</u>	DATA COL DA			•
100			i ma i		n		
		Import	Export		Save	ОК	Cancel
File imp	orted sucessfully						

- 2. Click **Import...**. The *Open* dialog displays.
- 3. Locate and select the Parameter List that you want to import.
- 4. Click **Open** and the document will be imported and displayed in the *Parameter List* window.
- 5. To save the changes and keep the window open, click **Save**. To save the changes and close the window, click **OK**. This Parameter List will now be displayed by default whenever **Parameter List...** is selected from the **Logs/Reports** menu.

To export the Parameter List, do the following:

- 1. Click **Export...**. The Save as dialog displays.
- 2. Navigate to the folder to which you want to save the file.
- 3. Click Save. The Parameter List will be saved with the .xls extension.
- 4. To save the changes and keep the window open, click **Save**. To save the changes and close the window, click **OK**. This Parameter List will now be displayed by default whenever **Parameter List...** is selected from the **Logs/Reports** menu.

5.4 Working with drawings and documents

Use this feature to access GC-related drawings and documents such as flow diagrams, the GC's sales order, assembly drawings, and electrical diagrams. These items are stored on the GC in the following formats:

- PDF
- TIFF
- GC Trend file (.xtrd)
- XA CGM file (.xcgm)
- XA Comparison file (.xcpm)
- GC Configuration file (.xcfg)

To find out which documents are available on the GC, select **Drawings/Documents...** from the **Logs/Reports** menu. The *Drawings/Documents* window displays.

Drawings/Documents			
Drawings/Documents			
	port	Delete File from GC	Add File(s) to GO

If the list of available documents does not display under *Drawings/ Documents* label, click the "+" beside the label.

Note

If no list displays under the *Drawings/Documents* label, and there is no "+" beside the label, then this GC does not contain any documents.

5.4.1 Viewing drawings or documents

To view a drawing, do the following:

1. Select **Drawings/Documents...** from the **Logs/Reports** menu. The *Drawings/Documents* window displays.

Figure 5-10. The Drawings/Documents window

Drawings/Documents		
Drawings/Documents Tref DE22143A1.tif Tref DE22143A2.tif Tref DE22143A3.tif		
	Export Delete File from GC Add	File(s) to GC
	File Viewer(F3)	Close

2. Select the drawing to view from the drop-down list.

Note

If no list displays under the *Drawings/Documents* label, and there is no "+" beside the label, then this GC does not contain any documents.

3. Click File Viewer (F3). The drawing displays.

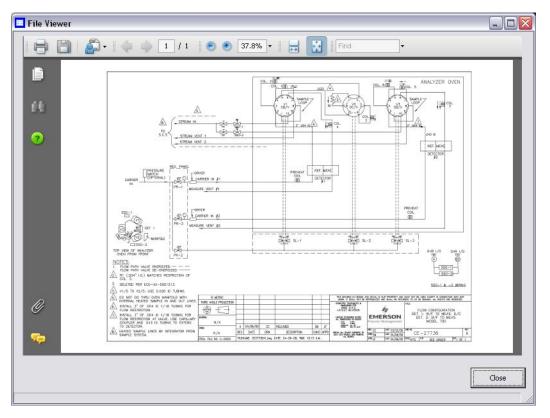


Figure 5-11. The File Viewer

4. Click **Close** to exit the window and to return to the *Drawings/ Documents* window.

5.4.2 Adding files to the GC

To add files, such as new or updated drawings, to the GC, do the following:

1. Select Drawings/Documents... from the Logs/Reports menu. The Drawings/Documents window displays.

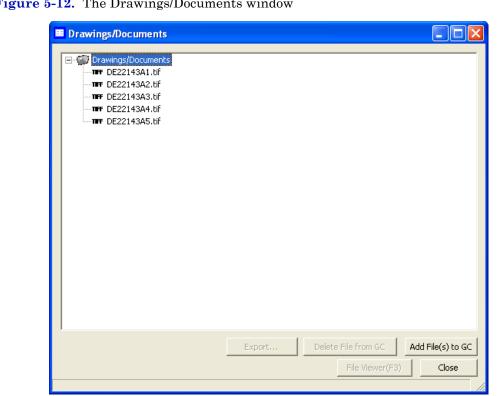


Figure 5-12. The Drawings/Documents window

- 2. Click Add File(s) to GC. The Open dialog displays.
- 3. Locate and select the file to add to the GC.
- 4. Click **Open**. The file will be saved to the GC and the *Drawings*/ Documents list will be updated.

5.4.3 Deleting files from the GC

To delete drawings from the GC, do the following:

1. Select **Drawings/Documents**... from the **Logs/Reports** menu. The *Drawings/Documents* window displays.

Figure 5-13. The Drawings/Documents window

Drawings/Documents		
Drawings/Documents		
TEFF DE22143A3.tif		
DE22143A5.tif		
,		
	Export Delete File from G	Add File(s) to GC
	File Views	er(F3) Close

- 2. Select the file to delete from the GC.
- 3. Click **Delete File from GC**. The *Confirm* message displays.
- 4. Click **Yes**. The file will be deleted from the GC and the *Drawings/ Documents* list will be updated.

5.5 Viewing the event log

Use this function to track the changes that are made to the various tables within the GC.

To view the Event Log, select **Logs/Reports** \rightarrow **Event Log...**. The *Event Log* window displays.

Figure 5-14. The Event Log window

COL					
C Select	t Range				
Sta	art Date:	9/26/2010			
En	d Date:	0.071.004.0			
LII		9/27/2010	<u> </u>		
Bead	Records				
User ID	Date	Time	Event Message	Old Value	New Value
ANIEL	9/24/2010	5:23:01 PM	Communication[5].MAP File : Changed	SIM_2251	SIM_2251_UK
ANIEL	9/24/2010	5:21:33 PM	Communication[5].MAP File : Changed	SIM_2251_UK	SIM_2251
ANIEL	9/24/2010	5:15:36 PM	Single Stream Run Initiated (3-Stream 3)		
ANIEL	9/24/2010	5:11:15 PM	Chromatograph Halted		
ANIEL	9/24/2010	5:07:15 PM	Stream[3].CDT : Changed		CDT 2
ANIEL	9/24/2010	5:07:15 PM	Stream[3].Usage : Changed	Unused	Analy
ANIEL	9/24/2010	5:05:03 PM	Single Stream Run Initiated (1-C6+ Cal Gas)	()	
ANIEL	9/24/2010	5:02:16 PM	Chromatograph Halted		
ANIEL	9/24/2010	3:28:46 PM	Communication[5].MAP File : Changed	SIM_2251	SIM_2251_UK
ANIEL	9/24/2010	3:21:37 PM	Communication[5].MAP File : Changed	SIM_2251_UK	SIM_2251
ANIEL	9/24/2010	3:20:23 PM	Communication[5].MAP File : Changed	SIM_2251_EXMB	SIM_2251_UK
ANIEL	9/24/2010	2:45:53 PM	Communication[5].MAP File : Changed	SIM 2251	SIM 2251 EXMB
ANIEL	9/24/2010	2:44:57 PM	Communication[5].MAP File : Changed	SIM_2251_UK	SIM_2251
ANIEL	9/24/2010	2:40:21 PM	Communication[5].MAP File : Changed	SIM_2251_EXMB	SIM_2251_UK
ANIEL	9/24/2010	2:31:57 PM	Communication[5].MAP File : Changed	SIM_2251	SIM_2251_EXMB
YSTEM	9/24/2010	12:18:27 PM	Averages [85] : Restarted	_	
		12-18-27 PM	Averages [94] : Restarted		

The *Event Log* window gives you the option of viewing the total list of change events, or a date-filtered list of events. The *Event Log* window supplies the following data for each event:

Name	Description
User ID	Indicates which user made the change.
Date	Indicates the date at the GC when the event occurred.
Time	Indicates the time at the GC when the event occurred.
Event Message	Provides a description of the event.
Old Value	If applicable, indicates the value in the cell before the change.
New Value	If applicable, indicates the value in the cell after change.

To view the list of change events, do the following:

- 1. To view all events, select the *All* checkbox. Otherwise, select the *Select Range* checkbox and use the *Start Date* and *End Date* drop-down boxes to select a date range.
- 2. Click **Read Records**. The list of events display with the most recent event at the top and the oldest event at the bottom. The events are also sorted and color-coded by time so that events that occurred simultaneously are grouped together.

Figure 5-15. The Event Log

	t Range				
St	art Date:	6/ 2/2009	•		
Er	nd Date:	6/ 3/2009	•		
		07 372003			
Bea	Records				
User ID	Date	Time	Event Message	Old Value	New Value
ANIEL	6/3/2009	1:12:38 PM	DO[1].Usage : Changed	do	common_alarm
ANIEL	6/3/2009	11:03:09 AM	Streams[4].Usage : Changed	2	0
ANIEL	6/3/2009	11:03:09 AM	Streams[3].Usage : Changed	2	0
ANIEL	6/3/2009	11:02:10 AM	Streams[4].Stream Valve : Changed	unused	SOL:SLOT_2:SOL_7
ANIEL	6/3/2009	11:02:10 AM	Streams[4].Auto Calib : Changed	false	true
ANIEL	6/3/2009	11:02:10 AM	Streams[4].Interval : Changed	1	24
ANIEL	6/3/2009	11:02:10 AM	Streams[4].TEV : Changed	1	2
ANIEL	6/3/2009	11:02:10 AM	Streams[4].CDT : Changed	CDT_1	CDT_2
ANIEL	6/3/2009	11:02:10 AM	Streams[4].Usage : Changed	0	2
ANIEL	6/3/2009	11:02:10 AM	Streams[3].Stream Valve : Changed	unused	SOL:SLOT_2:SOL_6
ANIEL	6/3/2009	11:02:10 AM	Streams[3].Auto Calib : Changed	false	true
ANIEL	6/3/2009	11:02:10 AM	Streams[3].Interval : Changed	1	24
ANIEL	6/3/2009	11:02:10 AM	Streams[3].Usage : Changed	0	2
ANIEL	6/3/2009	11:02:10 AM	Streams[3].Det # : Changed	1	2
ANIEL	6/3/2009	10:58:04 AM	Valves[7].Label : Changed	Stream 2	Stream2_Valve
ANIEL	6/3/2009	10:58:04 AM	Valves[6].Label : Changed	Stream 1	Stream1_Valve
	6/3/2009	10:48:17 AM	Detectors[2].Autozero FID : Changed	2	3

- 3. To save the list, click **Save**. The list can be saved in the following formats:
 - Tab-Delimited (.txt)
 - Comma-Delimited (.csv)
 - Microsoft Excel (.xls)
 - HTML File (.html)
 - XML File (.xml)

5.6 Displaying reports

This function allows you to immediately display, print, or store preconfigured reports of GC analysis data. Data is reported in real-time from the GC or from saved files.

5.6.1 Understanding report types

MON 20/20 can generate the following types of reports:

• Analysis: Displays a list of the components that were detected, based on raw data. Displays a list of calculations for each component, based on the table located at Application \rightarrow Calculations \rightarrow Control.... See "Setting standard calculations by stream" on page 4-37 for more information.

There are two types of analysis reports: *Analysis (GPA)* and *Analysis (ISO)*. See page 5-25 for an example Analysis (GPA) report. See page 5-26 for an example Analysis (ISO) report.

- **Calibration**: Displays a list of the components that were detected, along with each component's calibration concentration, raw data value, new response factor, and new retention time. See page 5-27 for an example report.
- **Final Calibration**: The Final Calibration report displays the list of components along with each component's old and new response factors, and each component's old and new retention times, based on the averaged data. See page 5-28 for an example report.
- Validation: For the most recent validation cycle, displays the Nominal Value, Allowed Percent Deviation, and the Measured Value of each variable in the Validation Data table. See page 5-29 for an example report.

Note

If the actual deviation is beyond the allowed amount, then the row will be flagged with an *.

• **Final Validation**: For the most recent validation run, shows the Nominal Value, Allowed Percent Deviation, and the Average Value of each variable in the Validation Data table. See page 5-30 for an example report.

Note

If the actual deviation is beyond the allowed amount, then the row will be flagged with an *.

- **Raw Data**: Displays a list of data for each peak that was detected during the run, including the retention time, peak area, and peak height. See page 5-31 for an example report.
- **Every Run**: Displays a configurable list of calculations after each run. See "Editing average calculations" on page 4-39 for more information.
- **Hourly**: Displays a configurable list of average calculations each hour, beginning at the time set in the **Average Calculations** window at **Application** → **Calculations** → **Averages...**. See "Editing average calculations" on page 4-39 for more information.
- 24 Hour: Displays a configurable list of average calculations each day, beginning at the time set in the Average Calculations window at Application \rightarrow Calculations \rightarrow Averages.... See "Editing average calculations" on page 4-39 for more information.
- Weekly: Displays a configurable list of average calculations each week, beginning on the day set in the Average Calculations window at Application → Calculations → Averages.... See "Editing average calculations" on page 4-39 for more information.
- Monthly: Displays a configurable list of average calculations each month, beginning on the day of the month set in the Average Calculations window at Application → Calculations → Averages.... See "Editing average calculations" on page 4-39 for more information.
- Variable: Displays a configurable list of average calculations every hour at the time entered in the Hours column in the Average Calculations window at Application → Calculations → Averages.... See "Editing average calculations" on page 4-39 for more information.

Each report begins with the following header information:

- **Date-Time**: The GC's date and time when the report was generated.
- Analysis Time: The duration, in seconds, of the analysis. Can be configured at Application → Timed Events.... See "Setting the cycle and analysis time" on page 4-29 for more information.
- Cycle Time: The duration, in seconds, between two consecutive analyses. Can be configured at Application → Timed Events.... See "Setting the cycle and analysis time" on page 4-29 for more information.
- Stream: The stream that was analyzed. Selected as part of the report generation process. See "Viewing a saved report" on page 5-35 for more information.
- Mode: Displays the operational status of the detector.
- Cycle Start Time: The date and time that the cycle started.
- **Analyzer**: Name of the GC that generated the data used for the report.
- Stream Sequence: The identification and order of the streams that were analyzed. Can be configured at Applications → Stream Sequence.... See "Creating a stream sequence for a detector" on page 4-78 for more information.

Figure 5-16. Analysis (GPA) sample report

	A	nalysis Report	(GPA)				
Date-Time : 10/07/2010 Stream : Stream 19 Inalyzer : MJ Company :	Mod	e :	Analysis		: 300.00 s ime : 10/07/20 14,15,16,17,18,1	010 03:35:36 PM	
Component Name	Mole Percent		Relative as Density				
6+ 47/35/17	0.0000%	0.00	0.0000				
PROPANE	4.8615%	731.95	0.0000				
-BUTANE	4.0010%	0.00	0.0000				
BUTANE	0.0000%	0.00	0.0000				
IEOPENTANE	0.0000%	0.00	0.0000				
-PENTANE	0.0000%	0.00	0.0000				
-PENTANE	68.1050%	16336.62	1.6966				
IITROGEN	0.0000%	0.00	0.0000				
IETHANE	0.0000%	0.00	0.0000				
CARBON DIOXIDE	26.4619%	0.00	0.4021				
THANE NONANE	0.0000% 0.0000%	0.00	0.0000 0.0000				
1-NUNANE 1-HEXANE	0.0000%	162.69	0.0000				
1-HEPTANE	0.0000%	0.00	0.0000				
1-OCTANE	0.0000%	0.00	0.0000				
	100.0000% ned components	17231.26	2.1897				
*' indicates user-defi Compressibility Factor Rase Pressures	ned components (1/2) @ 14.73000 : 14.7	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 				
*' indicates user-defi Compressibility Factor Sase Pressures Cuctual Gross BTU Actual Net BTU	ned components (1/2) @ 14.73000 14.7 = 2987. = 2762.	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 	 3245.1824 C			
Real Relative Density G	ned components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. :as = 2.1	PSIA and 60 Deg 3000 14.0000 5959 2839.534 1951 2625.304 2656	.F = 1.03510 0 15.00000 7 3042.3584	 3245.1824 C			
*' indicates user-defi Compressibility Factor Base Pressures Actual Gross BTU Actual Net BTU Bross Dry BTU / 1b Beal Relative Density G	ned components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. :as = 2.1	PSIA and 60 Deg 3000 14.0000 5959 2839.534 1951 2625.304 2559	.F = 1.03510 0 15.00000 7 3042.3584	 3245.1824 C			
*' indicates user-defi Compressibility Factor Base Pressures Actual Gross BTU Actual Met BTU Gross Dry BTU / 1b	ned components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. :as = 2.1	PSIA and 60 Deg 3000 14.0000 5959 2839.534 1951 2625.304 2656	.F = 1.03510 0 15.00000 7 3042.3584	 3245.1824 C	orrected/Z		
*' indicates user-defi Compressibility Factor Sase Pressures Actual Gross BTU Actual Net BTU Gross Dry BTU / 1b Real Relative Density G Dunormalized Mole Perce	ned components (1/2) @ 14.73000 = 2987. = 2762. = 17231. as = 2. mt = 3 mt = 3 %	PSIA and 60 Deg 3000 14.0000 5959 2839.534 1951 2625.304 2656	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824 C 3000.3477 C	orrected/Z		

Figure 5-17. Analysis (ISO) sample report

Analysis (ISO)	
	~
ISO Analysis	
Date-Time 10/07/2010 03:41:17 PM Analysis 10:00 sec Cycle Time : 300.00 sec Stream : Stream : Stream : 10:07/2010 03:35:36 PM Analyzer : MJ Stream Seq. : 1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 Company : : : 1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20	
Primary Secondary Reference Temperature - Combustion Deg.C 0.0 0.0 Reference Temperature - Metering Deg.C 0.0 0.0 Calorific Value - Units kJ/m3 kJ/m3	
Component Name Mole Percent	
C64 47/35/17 0.0000% PROPANE 4.8615% i-DUTANE 0.0000% n-BUTANE 0.0000% i-PENTANE 0.0000% i-PENTANE 0.0000% n-PENTANE 0.0000% MITROCEN 0.0000% MITHANE 0.0000% MITHANE 0.0000% PENTANE 0.0000% n-PENTANE 0.0000% MITHANE 0.0000% n-MEXANE 0.5717% n-HEXANE 0.0000% n-OCTANE 0.0000% TOTALS 100.0000% '*' indicates user-defined components Base Pressures 1.01560 0.96527 1.03421 1.10316	10.0°
Total Unnormalized Mole Percent = 3.598	
ACTIVE ALARMS Alarm Name Alarm State	
Heater 1_Status Heater 2_Status FID 2_Flame Status FID 2_Scaling Factor TCD 1_Scaling Factor Analog Input 1_Low Signal Alarm Analog Input 2_Low Signal Alarm 3 - Stream 3_IS Validation Failed? FCalib_2 - Stream 2_RF Dev Alarm Last_FCalib_RF Dev Alarm	~
Back Eorward Save Print Font +/- Open Close	
Waiting for completion of analysis ////	
making for completion or analysis [[[]]	

Figure 5-18. Calibration sample report

		Calibration Report	5			
				Calibration R	un l of l	
Date-Time : 10/07/2010	0 03:01:48 PM Anal				240.00 sec	
Stream : C6+ Cal Ga			libration Cycle	Start Time :	10/05/2010 07:36:	54 PM
Analyzer : Phoenix	Stre	am Seq. : 1				
Component Name	Cal Conc.	Raw Data	New RF	RF % Dev.	New RT RT % De	v.
C6+ 47/35/17	0.0310%	9937899.00	3.205774e+08	0.03	28.8 -0.	21
Propane	1.0040%	220651280.00	2.197722e+08	-0.01	49.5 -0.	04
i-Butane	0.2999%	76258784.00	2.542807e+08	-0.03	63.8 0.	00
n-Butane	0.2995%	77799408.00	2.597643e+08	0.06	73.4 0.	00
Neopentane	0.0990%	28719324.00	2.900942e+08	0.12	81.4 0.	00
i-Pentane	0.0995%	28656258.00	2.880026e+08	-3.64	108.2 0.	00
n-Pentane	0.0998%	29686292.00	2.974579e+08	-16.86	122.8 -0.	03
Nitrogen	2.4940%	336061024.00	1.347478e+08	0.01	147.8 0.	00
Methane	89.6062%	9613201408.00	1.072828e+08	0.01	152.0 0.	00
Carbon Dioxide	0.9921%	160365968.00	1.616429e+08	-0.00	181.3 -0.	01
Ethane	4.9750%	894545792.00	1.798082e+08	0.01	207.1 -0.	01
ACTIVE ALARMS						
Alarm Name			Al	arm State		
Analog Input l_Low Sign	nal Alarm					
Analog Input 2_Low Sign						
FCalib_1 - C6+ Cal Gas_	_RF Dev Alarm					
ANALOG INPUTS	TT- 1					
Analog Input	Value					
Analog Input 1	-24,993					
Analog Input 2	-25.000					
-						
						8

		Fina	l Calibration R	eport				
Date-Time : 10/07/20	NG 03-03-31 DM	Analysis time	· 230 00 cec	Cycle Time	. 2	40 00 sec		
Stream : C6+ Cal Analyzer : Phoenix		Mode Stream Seq.	: Calib	Cycle Start ?			(7:36:54 PM	
Component Name	Calibration Conc	Old Resp Factor	New Resp Factor	Resp Factor * % Dev.	Old Ret Time	New Ret Time	Ret Time % Dev.	*
C6+ 47/35/17	0.031%	3.204715e+08	3.205774e+08	0.03	28.9	28.8	-0.21	
Propane	1.004%	2.198041e+08		-0.01	49.5	49.5	-0.04	
i-Butane		2.543614e+08		-0.03	63.8		0.00	
n-Butane		2.59604e+08		0.06	73.4		0.00	
Neopentane		2.89742e+08		0.12	81.4		0.00	
i-Pentane	0.0995%	2.988954e+08	2.880026e+08	-3.64	108.2		0.00	
n-Pentane	0.0998%	3.577954e+08	2.974579e+08	-16.86	122.8	122.8	-0.03	
Nitrogen		1.347333e+08		0.01	147.8		0.00	
Methane		1.072685e+08		0.01	152.0		0.00	
Carbon Dioxide		1.616487e+08		-0.00	181.3		-0.01	
Ethane	4.975%	1.797919e+08	1.798082e+08	0.01	207.1	207.1	-0.01	
ACTIVE ALARMS Alarm Name Analog Input 1_Low Si Analog Input 2_Low Si FCalib_1 - C6+ Cal Ga	gnal Alarm			Alarm Stat	ce			
	S_KF DEV ATATM							
ANALOG INPUTS Analog Input	Valu	le						
Analog Input 1	-24.							
Analog Input 1 Analog Input 2	-24.							
								>

Figure 5-19. Final Calibration sample report

Figure 5-20. Validation sample report

	A	nalysis Report	(GPA)				
Date-Time : 10/07/201(Stream : Stream 19 Analyzer : MJ Company :	Mod	e :	Analysis		: 300.00 : Time : 10/07/2(;,14,15,16,17,18,:	010 03:35:36 PM	1
Component Name	Mole Percent		Relative as Density				
C6+ 47/35/17 PROPANE	0.0000% 4.8615%	0.00 731.95	0.0000 0.0740				
-BUTANE	4.8615*	0.00	0.0000				
1-BUTANE	0.0000%	0.00	0.0000				
IEOPENTANE	0.0000%	0.00	0.0000				
-PENTANE	0.0000%	0.00	0.0000				
1-PENTANE	68.1050%	16336.62	1.6966				
IITROGEN	0.0000%	0.00	0.0000				
IETHANE	0.0000%	0.00	0.0000				
ARBON DIOXIDE	26.4619%	0.00	0.4021				
THANE NONANE	0.0000%	0.00	0.0000				
1-NUNANE 1-HEXANE	0.0000% 0.5717%	0.00 162.69	0.0000 0.0170				
1-HEPTANE	0.0000%	0.00	0.0000				
n-OCTANE	0.0000%	0.00	0.0000				
	100.0000% ined components	17231.26	2.1897				
*' indicates user-def: Compressibility Factor Base Pressures	ined components (1/2) @ 14.73000 14.7	PSIA and 60 Deg 3000 14.0000	.F = 1.03510 0 15.00000	16.00000			
TOTÀLS **' indicates user-def: Compressibility Factor Sase Pressures Actual Gross BTU	ined components (1/2) @ 14.73000 14.7	PSIA and 60 Deg 3000 14.0000	.F = 1.03510 0 15.00000 		Corrected/Z		
'*' indicates user-def: Compressibility Factor Base Pressures	ined components (1/Z) @ 14.73000 14.7	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 	3245.1824			
"*' indicates user-def: Compressibility Factor Sase Pressures Actual Gross BTU Actual Net BTU Sross Dry BTU / 1b	ined components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231.	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824			
"*' indicates user-def: Compressibility Factor Base Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Real Relative Density (ined components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. Cas = 2.	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824			
"*' indicates user-def: Compressibility Factor Base Pressures Actual Cross BTU Actual Net BTU Fross Dry BTU / 1b Real Relative Density (Junormalized Mole Perce	ined components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. Cas = 2.	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824			
"*' indicates user-def: Compressibility Factor Base Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Real Relative Density (ined components (1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. Cas = 2.	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824	Corrected/Z		
<pre>'*' indicates user-def: Compressibility Factor Base Pressures Actual Gross BTU Actual Net BTU Gross Dry BTU / 1b Real Relative Density (Junormalized Mole Perco ACTIVE ALARMS</pre>	<pre>ined components (1/2) @ 14.73000</pre>	PSIA and 60 Deg 3000 14.0000 	.F = 1.03510 0 15.00000 7 3042.3584	3245.1824 3000.3477	Corrected/Z		

Figure 5-21. Final Validation sample report

	A	nalysis Report	(GPA)		
ate-Time : 10/07/2010	03:40:49 PM Ana	lvsis time :	290.00 sec	Cycle Time : 300.00 sec	
				Cycle Start Time : 10/07/2010 0	3:35:36 PM
nalyzer : MJ				,10,11,12,13,14,15,16,17,18,19,20	
Company :					
component Name	Mole Percent	Drv Gross	Relative		
			as Density		
6+ 47/35/17	0.0000%	0.00	0.0000		
ROPANE	4.8615%	731.95	0.0740		
BUTANE	0.0000%	0.00	0.0000		
-BUTANE	0.0000%	0.00	0.0000		
IEOPENTANE PENTANE	0.0000%	0.00	0.0000 0.0000		
-PENTANE	68.1050%	16336.62	1.6966		
ITROGEN	0.0000%	0.00	0.0000		
ETHANE	0.0000%	0.00	0.0000		
ARBON DIOXIDE	26.4619%	0.00	0.4021		
THANE	0.0000%	0.00	0.0000		
-NONANE	0.0000%	0.00	0.0000		
HEXANE	0.5717%	162.69	0.0170		
1-HEPTANE 1-OCTANE	0.0000% 0.0000%	0.00	0.0000 0.0000		
-ociaws	0.0000*	0.00	0.0000		
OTALS	100.0000%	17231.26	2.1897		
*' indicates user-defin	ed components				
Compressibility Factor (1/2) @ 14.73000	_			
Compressibility Factor (Sase Pressures	1/2) @ 14.73000 14.7	3000 14.0000	0 15.00000	16.00000	
Compressibility Factor (Sase Pressures Actual Gross BTU	1/Z) @ 14.73000 14.7 = 2987.	3000 14.0000 	0 15.00000 7 3042.3584	 3245.1824 Corrected/Z	
Compressibility Factor (ase Pressures ctual Gross BTU ctual Arat BTU	1/2) @ 14.73000 14.7 = 2987. = 2752	3000 14.0000 5959 2839.534 1951 2625.304	0 15.00000 7 3042.3584		
Compressibility Factor (ase Pressures actual Gross BTU actual Net BTU bross Dry BTU / 1b	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231.	3000 14.0000 5959 2839.534 1951 2625.304 2559	0 15.00000 7 3042.3584	 3245.1824 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Gross Dry BTU / 1b Weal Relative Density Ga	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	 3245.1824 Corrected/Z	
Compressibility Factor (ase Pressures 	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559	0 15.00000 7 3042.3584	 3245.1824 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Weal Relative Density Ga Annormalized Mole Percen	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Weal Relative Density Ga Annormalized Mole Percen	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	 3245.1824 Corrected/Z	
Compressibility Factor (Same Pressures Actual Gross BTU Actual Net BTU Gross Dry BTU / 1b Real Relative Density Ga Junormalized Mole Percen ACTIVE ALARMS Alarm Name	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Base Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Real Relative Density Ga Junormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Same Pressures Actual Gross BTU Actual Met BTU Fross Dry BTU / lb Real Relative Density Ga Annormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Sross Dry BTU / 1b Heal Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status HD 2_Flame Status	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2.	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Fross Dry BTU / 1b Real Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status HD 2_Flame Status TD 2_Scaling Factor CD 1_Scaling Factor	1/2) @ 14.73000 14.7 = 2987. = 2762. = 17231. s = 2. t = 3	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross ETU Actual Net ETU Sross Dry BTU / 1b Heal Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status HD 2_Flame Status HD 2_Scaling Factor CD 1_Scaling Factor Malog Input 1_Low Signa	1/2) @ 14.73000 	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Lectual Gross BTU Lectual Net BTU Fross Dry BTU / 1b Real Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Llarm Name Meater 1_Status Heater 2_Status MD 2_Flame Status MD 2_Scaling Factor CD 1_Scaling Factor unalog Input 1_Low Signa malog Input 2_Low Signa	<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Gross BTU Actual Net BTU Sross Dry BTU / 1b Real Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status HID	<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (Sase Pressures Actual Cross ETU Actual Net ETU Sross Dry BTU / 1b Heal Relative Density Ga Monormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status HD 2_Flame Status HD 2_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Tactor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Tactor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Factor (CD 1_Scaling Scaling C 1) (CD 1_Scaling C 1) (CD 1_Scaling C 2) (CD 1_Scaling C 2) (<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 1951 2625.304 2559 2656	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	
Compressibility Factor (ase Pressures 	<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 2625.304 2656 .598	0 15.00000 7 3042.3584	3245.1824 Corrected/Z 3000.3477 Corrected/Z	Close
Compressibility Factor (Safe Pressures Contal Gross BTU Contal Gross BTU Contal Net BTU Fross Dry BTU / 1b teal Relative Density Ga fornormalized Mole Percen CTIVE ALARMS Llarm Name Meater 1_Status Meater 2_Status TD 2_Flame Status TD 2_Flame Status TD 2_Staling Factor CD 1_Scaling Fact	<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 2625.304 2656 .598	0 15.00000 7 3042.3584 2 2812.8259	3245.1824 Corrected/Z 3000.3477 Corrected/Z Alarm State	Close
<pre>**' indicates user-defin Compressibility Factor (Base Pressures Actual Gross BTU Actual Net BTU Gross Dry BTU / 1b Beal Relative Density Ga Dunormalized Mole Percen ACTIVE ALARMS Alarm Name Heater 1_Status Heater 2_Status FID 2_Flame Status FID 2_Flame Status FID 2_Scaling Factor Analog Input 1_Low Signa Analog Input 1_Low Signa S - Stream 3_Is Validati FCalib_2 - Stream 2_RF D Last_FCalib_RF Dev Alarm Back</pre>	<pre>1/2) @ 14.73000</pre>	3000 14.0000 5959 2839.534 2625.304 2656 .598	0 15.00000 7 3042.3584 2 2812.8259	3245.1824 Corrected/Z 3000.3477 Corrected/Z Alarm State	Close

Figure 5-22. RawData sample report

				Raw 1	Data Repor	t			
Stream	ime : 10/0 : Stre er : MJ		50 PM Analy Mode	vsis ti:		00 sec Cycl lysis Cycl		: 300.00 sec : 10/07/2010 03:4	0:36 PM
Peak No.	Retention Time	Peak Area	Peak Height	Det No.	Method	Integration Start	Integration End	Peak Width@ Half Height	
1	37.6	303633680	1565704.1	1	100	28.4	42.0	3.3	
2			151310.8	1	2	48.5	55.2	1.3	
з	58.3	63500633	865853.8	l	2	55.2	60.0	1.4	
4	61.2	33617290	414714.0	1	з	60.0	67.5	1.6	
5		451076733			1	76.3	89.4	2.2	
6		194140923			1	112.4	131.8	3.8	
7	194.6			1	1	184.4	207.7	6.2	
8		320410616	720135.1	1	1	236.7	270.4	8.5	
1		6802869	48269.2			74.4	82.5	2.9	
2 3	102.0	6802869 43012212419		2	500	67.5 154.8	102.0 252.4	0.0 21.8	
4	264.9		12888.9	2	2 3	252.4	289.9	21.8	
Analog Analog 3 - St FCalib	Input 2_Lo ream 3_Is V	w Signal Alar w Signal Alar alidation Fai . 2_RF Dev Ala	m .1ed?						
	INPUTS		Value						
ANALOG Analog									
Analog Analog	Input 1 Input 2		-25.000 -25.000						

User Manual 3-9000-745

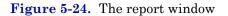
5.6.2 Viewing reports from live data

To view a report created from the most recent data, do the following:

1. Select **Report Displays...** from the **Log/Reports** menu. The *Report Display* window appears.

Figure 5-23. The Report Display window

Analysis(GPA) Analysis(ISO) Calibration Final Calibration		0 - Current Stre 1 - Stream 1	
Calibration			
Final Calibration		2 - Stream 2	
inal calibration		3 - Stream 3	
/alidation		4 - Stream 4	
Final Validation		5 - Stream 5	
Every Run		6 - Stream 6	
Hourly 24 Hour		7 - Stream 7 8 - Stream 8	
Veekly		9 - Stream 9	
Monthly		10 - Stream 10	
/ariable		11 - Stream 11	
Raw Data		12 - Stream 12	
Dew Point Calculations	<u>×</u>	13 - Stream 13	×
	v		


Note

By default, the *Update automatically* checkbox is selected. This means that when viewing a report based on the most recent data, the report will refresh as new data is created, based on the type of report that you select.

For example, in the *Report Display* window, if you select Analysis (GPA), the report display will refresh each time the GC finishes an analysis of the selected stream.

The refresh function displays the newly generated report and deletes the previous report (unless already saved to disk).

- 2. Select the type of report to view from the following list:
 - Analysis (GPA)
 - Analysis (ISO)
 - Calibration
 - Final Calibration
 - Validation
 - Final Validation
 - Every Run
 - Hourly
 - 24 Hour
 - Weekly
 - Monthly
 - Variable
 - Raw data
- 3. Select the appropriate stream.
- 4. Click Start (F2). The report displays.

		Calibration Report	5				
				Calibration R	un l of l		
Date-Time : 10/07/2010	03:01:48 PM Anal	vsis time : 230.	.00 sec Cycle	Time :	240.00 se	2C	
Stream : C6+ Cal Gas	s Mode	: Cal	libration Cycle	Start Time :	10/05/201	LO 07:36:54 PM	
Analyzer : Phoenix	Stre	am Seq. : 1					
Component Name	Cal Conc.	Raw Data	New RF	RF % Dev.	New RT	RT % Dev.	
C6+ 47/35/17	0.0310%	9937899.00	3.205774e+08	0.03	28.8	-0.21	
Propane	1.0040%	220651280.00	2.197722e+08	-0.01	49.5	-0.04	
i-Butane	0.2999%	76258784.00	2.542807e+08	-0.03	63.8	0.00	
n-Butane	0.2995%	77799408.00	2.597643e+08	0.06	73.4	0.00	
Neopentane	0.0990%	28719324.00	2.900942e+08	0.12	81.4	0.00	
i-Pentane	0.0995%	28656258.00	2.880026e+08	-3.64	108.2	0.00	
n-Pentane	0.0998%	29686292.00	2.974579e+08	-16.86	122.8	-0.03	
Nitrogen	2.4940%	336061024.00	1.347478e+08	0.01	147.8	0.00	
Methane	89.6062%	9613201408.00	1.072828e+08	0.01	152.0	0.00	
Carbon Dioxide	0.9921%	160365968.00	1.616429e+08	-0.00	181.3	-0.01	
Ethane	4.9750%	894545792.00	1.798082e+08	0.01	207.1	-0.01	
ACTIVE ALARMS							
Alarm Name			A1	arm State			
Analog Input 1_Low Signa Analog Input 2_Low Signa FCalib_1 - C6+ Cal Gas_1	al Alarm						
ANALOG INPUTS							
Analog Input	Value						
Analog Input 1	-24.993						
Ànalog Input 2	-25.000						
							2
Back Forwar	d Sav	-	int	Font +/-	Open	-	Close

Note

If the report doesn't appear right away, check the status of the report generation process in the status bar, which is below the row of buttons on the report window.

5. To change the font size, click **Font**. There are five preset font sizes available. Continue to click **Font** to cycle through the sizes until you are satisfied with the report's readability.

- 6. To save the file, click **Save**. The report can be saved in the following file formats:
 - TXT
 - HTM
 - HTML
 - MHT

5.6.3 Viewing a saved report

To view a saved report, do the following:

1. Select **Report Displays...** from the **Log/Reports** menu. The *Report Display* window appears.

Figure 5-25. The Report Display window

Report	Stream
Analysis(GPA) Analysis(ISO) Calibration Final Calibration Validation Every Run Hourly 24 Hour Weekly Monthly Variable Raw Data Dew Point Calculations	 O - Current Stream 1 - Stream 1 2 - Stream 2 3 - Stream 3 4 - Stream 4 5 - Stream 5 6 - Stream 6 7 - Stream 7 8 - Stream 8 9 - Stream 9 10 - Stream 10 11 - Stream 11 12 - Stream 12 13 - Stream 13
✓ Update automatically File <u>Viewer</u> (F3)	Start (F2) Close

2. Click File Viewer (F3). The Report file viewer window displays.

Report file view	ver					
Back	Forward	Save	Print	Font	Open	Close

Figure 5-26. The Report file viewer window

- 3. Click **Open**. The *Open* dialog displays.
- 4. Locate and select the report that you want to view. Reports can be found in the following file formats:
 - TXT
 - RPT
 - HTM
 - HTML
 - MHT
- 5. Click **Open**. The report displays.
- 6. To change the font size, click **Font**. There are five preset font sizes available. Continue to click **Font** to cycle through the sizes until you are satisfied with the report's readability.
- 7. To print the report, click **Print**.

5.7 Viewing reports based on archived data

Use the Archive Report commands to generate analysis, calibration, and average reports

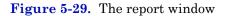
based on archived GC runs.

5.7.1 Viewing analysis and calibration reports based on archived data

To generate and view an analysis or calibration report from archived data, do the following:

 Select Logs/Reports → Archive Report → Analysis/Calibration/ Validation.... The Analysis/Calibration/Validation Archive Report window displays.

Report	✓ Stream	1
Archive Records	_	,
Time stamp	Туре	Stream
Archive Record Selection		
Archive Record Delection		Start Date 6/ 4/2009
	C Time Period	End Date 6/ 4/2009
All Records		citu Date 0/ 1/2009
 All Records 		,


Figure 5-27. The Analysis/Calibration Archive Report window

- 2. Select a report type from the *Report* drop-down list. You can choose from the following report types:
 - Analysis
 - Calibration
 - Final Calibration
 - Validation
 - Final Validation
 - Raw Data
 - Dew Point Calculations (optional)
- 3. Select a stream from the *Stream* drop-down list. By default, the *Archive Records* table displays all records for the selected report type and stream.

Report Analysis	▼ Str	eam Stream 2	•
Archive Records			
Time stamp	Туре	Stream	^
6/3/2009 8:50:45 AM	Analysis	Stream 2	
6/3/2009 8:45:44 AM	Analysis	Stream 2	
6/3/2009 8:40:43 AM	Analysis	Stream 2	
6/3/2009 8:35:42 AM	Analysis	Stream 2	
6/3/2009 8:30:41 AM	Analysis	Stream 2	
6/3/2009 8:25:40 AM	Analysis	Stream 2	
6/3/2009 8:20:39 AM	Analysis	Stream 2	
6/3/2009 8:15:38 AM	Analysis	Stream 2	
6/3/2009 8:10:37 AM	Analysis	Stream 2	
6/3/2009 8:05:36 AM	Analysis	Stream 2	
6/3/2009 8:00:35 AM	Analysis	Stream 2	
6/3/2009 7:55:34 AM	Analysis	Stream 2	
6/3/2009 7:50:33 AM	Analysis	Stream 2	
6/3/2009 7:45:32 AM	Analysis	Stream 2	
6/3/2009 7:40:31 AM	Analysis	Stream 2	
6/3/2009 7:35:30 AM	Analysis	Stream 2	
6/3/2009 7:30:29 AM	Analysis	Stream 2	
6/3/2009 7:25:28 AM	Analysis	Stream 2	~
4/9/9000 7:90:97 AM	Applusia	Stroom 2	
<			
rchive Record Selection			
		Start Date 6/ 2/2	- 2002
C	C =	Start Date	
All Records	🔘 Time Period		
		End Date 6/ 3/2	1009 V
	File Viewer	(F3) Start (F2)	Cancel

Figure 5-28. The Analysis/Calibration Archive Report window

- 4. To date-filter the list of records, select the *Time Period* checkbox and use the *Start Date* and *End Date* drop-down boxes to select a date range.
- 5. Select the record(s) that you want to view. To select several records, hold down **CTRL** and select each record. To select several records in a row, select the first record and then hold down **SHIFT** and select the last record in the series.
- 6. Click **Start (F2)**. The report displays. If more than one record was selected, each report displays after that previous report on the same page.

		Calibration Report	5				
				Calibration R	un l of l		
Date-Time : 10/07/2010	03:01:48 PM Anal	ysis time : 230.	00 sec Cycle	Time :	240.00 se	c	
Stream : C6+ Cal Gas	s Mode	: Cal	ibration Cycle	Start Time :	10/05/201	0 07:36:54 PM	
Analyzer : Phoenix	Stre	am Seq. : 1					
Component Name	Cal Conc.	Raw Data	New RF	RF % Dev.	New RT	RT % Dev.	
C6+ 47/35/17	0.0310%	9937899.00	3.205774e+08	0.03	28.8	-0.21	
Propane	1.0040%	220651280.00	2.197722e+08	-0.01	49.5	-0.04	
i-Butane	0.2999%	76258784.00	2.542807e+08	-0.03	63.8	0.00	
n-Butane	0.2995%	77799408.00	2.597643e+08	0.06	73.4	0.00	
Neopentane	0.0990%	28719324.00	2.900942e+08	0.12	81.4	0.00	
i-Pentane	0.0995%	28656258.00	2.880026e+08	-3.64	108.2	0.00	
n-Pentane	0.0998%	29686292.00	2.974579e+08	-16.86	122.8	-0.03	
Nitrogen	2.4940%	336061024.00	1.347478e+08	0.01	147.8	0.00	
Methane	89.6062%	9613201408.00	1.072828e+08	0.01	152.0	0.00	
Carbon Dioxide	0.9921%	160365968.00	1.616429e+08	-0.00	181.3	-0.01	
Ethane	4.9750%	894545792.00	1.798082e+08	0.01	207.1	-0.01	
ACTIVE ALARMS							
Alarm Name			Al	arm State			
Analog Input 1_Low Signs	al Alarm						
Analog Input 2_Low Signs	al Alarm						
FCalib_1 - C6+ Cal Gas_1	RF Dev Alarm						
ANALOG INPUTS							
Analog Input	Value						
Analog Input l	-24.993						
Analog Input 2	-25.000						
							3
		6	r c	Font +/-	Open	-	lose

- 7. To change the font size, click **Font**. There are five preset font sizes available. Continue to click **Font** to cycle through the sizes until you are satisfied with the report's readability.
- 8. To print the report, click **Print**.

- 9. To save the file, click **Save**. The report can be saved in the following file formats:
 - TXT
 - HTM
 - HTML
 - MHT

5.7.2 Viewing average reports based on archived data

To generate and view an average report from archived data, do the following:

1. Select **Logs/Reports** \rightarrow **Archive Report** \rightarrow **Average...**. The *Average Archive Report* window displays.

eport	▼ Stream	
st of Averages		_
Average Variable Names		
	Select All	Deselect All
Archive Record Selection		
Number of most recent records		1
	_	1
C Time Period		40:05 AM
C Time Period Start Date and Time	6/ 4/2009 - 9	
Start Date and Time		· ·
		40:05 AM

Figure 5-30. The Analysis/Calibration Archive Report window

- 2. Select a report type from the *Report* drop-down list. You can choose from the following report types:
 - Every Run
 - Hourly
 - 24 Hour
 - Weekly
 - Monthly
 - Variable

- 3. Select a stream from the *Stream* drop-down list. By default, the *List* of *Averages* table displays all records for the selected report type and stream.
- 4. To date-filter the list of records, select the *Time Period* checkbox and use the *Start Date* and *End Date* drop-down boxes to select a date range.
- 5. Select the record(s) that you want to view. To select several records, hold down **CTRL** and select each record. To select several records in a row, select the first record and then hold down **SHIFT** and select the last record in the series.
- 6. Click **Start (F2)**. The report displays. If more than one record was selected, each report displays after that previous report on the same page.
- 7. To change the font size, click **Font**. There are five preset font sizes available. Continue to click **Font** to cycle through the sizes until you are satisfied with the report's readability.
- 8. To print the report, click **Print**.
- 9. To save the file, click **Save**. The report can be saved in the following file formats:
 - TXT
 - HTM
 - HTML
 - MHT

5.7.3 Printing reports automatically

To configure MON 20/20 to print a report of your choosing automatically based on that report's schedule of availability, do the following:

1. Select **Printer Control...** from the **Logs/Reports** menu. The *Printer Control* window displays.

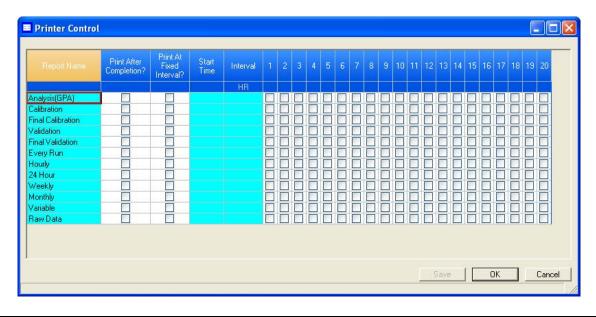


Figure 5-31. The Printer Control window

Note

MON 20/20 must be connected to the GC for the report to be printed.

- 2. The following types of potential reports are listed in the *Report Name* column:
 - Analysis (GPA) An analysis report will print after an analysis run is completed.

Note

If **ISO** is set in the *Calculations Configuration* screen, Analysis (ISO) will be listed under the *Report Name* column instead of Analysis (GPA); if **GPA & ISO** is set in the *Calculations Configuration* screen, the both Analysis (ISO) and Analysis (GPA) will be listed under the *Report Name* column.

- **Calibration** An calibration report will print after an calibration run is completed.
- **Final Calibration** An final calibration report will print after a final calibration run is completed.
- **Validation** An validation report will print after an validation run is completed.
- **Final Validation** An final validation report will print after a final validation run is completed.
- **Every Run** A report will be generated each time an Every Run average calculation is run.
- **Hourly**: A report will be generated each time an Hourly average calculation is run.
- **24 Hour**: A report will be generated each time a 24 Hour average calculation is run.
- **Weekly**: A report will be generated each time a Weekly average calculation is run.
- **Monthly**: A report will be generated each time a Monthly average calculation is run.
- **Variable**: A report will be generated each time a Variable average calculation is run.
- **Raw Data** Each time raw data is generated, a report will be printed.
- 3. To print a report after a run, check the appropriate checkbox from the *Print After Completion?* column.

- 4. To print a report at a fixed interval, check the appropriate checkbox from the *Print At Fixed Interval?* column.
 - (a.) Enter a start time in the *Start Time* column.
 - (b.) Enter an interval, in hours, in the Interval column.
- 5. Use the columns numbered 1 through 20 to select the streams that you want to use for data collection.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

5.8 Viewing trend data

This function allows you to view, print, or save graphical representations, or trend lines, of accumulated analysis data from the GC.

5.8.1 Viewing live trend data

You cannot view a live trend if the corresponding analysis record does not exist in the GC's memory.

To view live trend data, do the following:

1. Select **Trend Data...** from the **Logs/Reports** menu. The *Trend Data* window displays.

Note

Trend Dat	ta							
12-	J9 02:61:43, 0)	_				RD# Pt# 1	Value Date	Time
• <u>9</u>]•-4- -12-		I				IRD Average	Minimum N	1aximum Samples
08-03-09 05-03-09 14:51:43	06-03-09	00'54: 00'54: 00'00 80'00 00'54: 00'00 00	06-04-09 05:15:43	06-04-09 10:03:43	08-04.09		C All Data	Selected Data
Graph Edit	Cursor Print			SaveRe	move Archive	e Cur/All :	5ave All	Trend PC File Close

Figure 5-32. The Trend Data window

2. Click **Trend**. The Select records for Trending window displays.

Select records for Trending	
Select Analysis / Calibration Records ■ Analysis ■ 1 - Stream 1 Component ■ Resp Fact ■ METHANE	Selected Records
Select Average Records Hourly 24 Hour Weekly Monthly Variable EveryRun	>
□ Trend Record Selection	Remove All
	Trend Cancel

Figure 5-33. The Select records for Trending window

- 3. Select the analysis or calibration records that you want to trend from the *Select Analysis/Calibration Records* selection menu. Click > to move your selection to the **Selected Records** queue.
- 4. If applicable, select the type of average record that you want to trend from the **Select Average Records** section. Click > to move your selection to the **Selected Records** queue.
- 5. To remove a selection from the **Selected Records** queue, click **Remove**. To remove all selections from the **Selected Records** queue, click **Remove All**.
- 6. Click the *All Records* checkbox from the **Trend Record Selection** section to use all data for the trend report, or click the *Time Period* checkbox and select a *Start Date* and *End Date* for the data to be used.

7. Click **Trend**. MON 20/20 reads the data from the GC and then closes the *Select records for Trending* window and plots the trend data on the graph section of the *Trend Data* window.

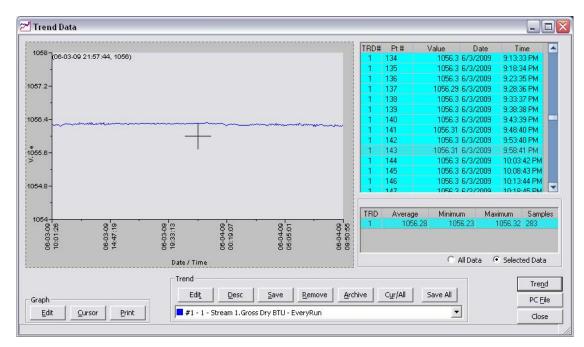


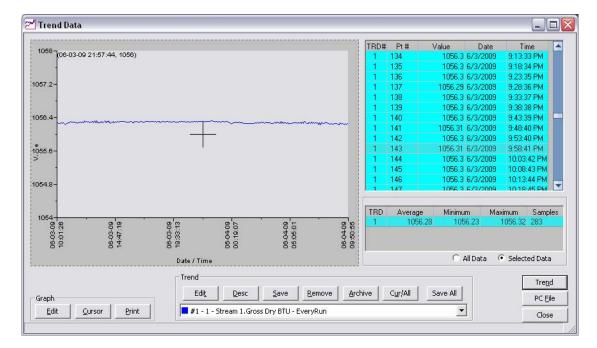
Figure 5-34. The Trend Data window with graphs

Each trend record is color-coded; use the *Trend* pull-down menu to select a specific trend record.

Note

To view the chromatogram that is associated with a particular trend data point, locate the data point in the table and double-click it while pressing the SHIFT key.

5.8.2 Viewing saved trend data


Trend data files are saved with the XTRD file extension. To view a saved trend file, do the following:

1. Select **Trend Data...** from the **Logs/Reports** menu. The *Trend Data* window displays.

🚰 Trend Data 207(06-04-09 02:51:43, 0) 12 Value -4 -12-06-03-09 05 14:51:43 06-04-09 00:27:43 06-04-09 05:15:43 06-04-09 10:03:43 08-04-09 14:51:43 06-03-09 19:39:43 Selected Data C All Data Date / Time Trend Trend Desc Save Remove Archive Cur/All Save All Edit PC File Graph -Cursor Print Edit Close

Figure 5-35. The Trend Data window

- 2. Click PC File. The Open Trend File window displays.
- 3. Select the file that you want to view and click **Open**. The trend graph displays.

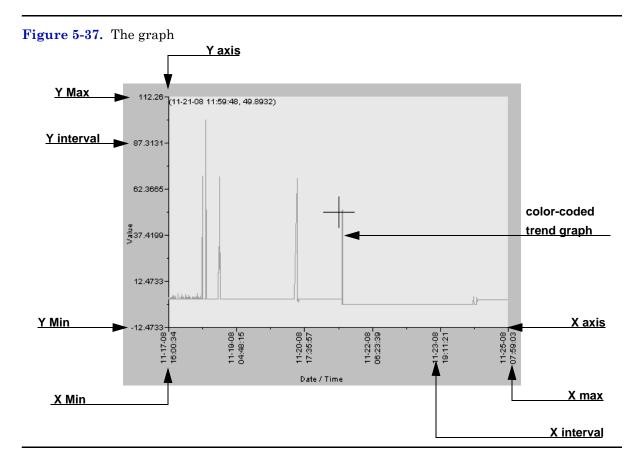
Figure 5-36. The Trend Data window

Note

To view the chromatogram that is associated with a particular trend data point, locate the data point in the table and double-click it while pressing the SHIFT key.

5.9 Working with the Trend Graph

Right-clicking with the mouse on the graph brings up the following commands and keyboard shortcuts:


Command Name	Shortcut	Description
Zoom In	"+" (NUMPAD)	Zooms in on the entire graph.
		NOTE : Another way to zoom in is by clicking and dragging your mouse to select the region of the graph that you want to zoom in on.
Zoom Out	"-" (NUMPAD)	Zooms out from the entire graph.
Zoom X In	"6" (NUMPAD)	Zooms in on the X axis.
Zoom X Out	"4" (NUMPAD)	Zooms out from the X axis.
Zoom Y In	"8" (NUMPAD)	Zooms in on the Y axis.
Zoom Y Out	"2" (NUMPAD)	Zooms out from the Y axis.
		NOTE: When the Selected Data checkbox is selected, the small table to the right of the graph displays the trend data for the visible area of the graph when zooming in and out.
Save State	CTRL + HOME	Saves current or archived display settings for the selected trend graph. NOTE: The Save State function is available only when
		viewing a live or archived trend graph.
Restore State	HOME	Restores the last saved display settings for the selected trend graph. NOTE: Pressing HOME returns the user to the saved state.
Toggle Full Screen	F11	Maximizes the display of the graph in the Trend Data window.
Cursor to Nearest Point	F8	Snaps the cursor to the nearest point on the trend graph in both the X and Y directions.

Command Name	Shortcut	Description
Toggle Coarse/Fine Cursor	F4	Toggles the cursor from coarse and less accurate to fine and more accurate.
Toggle Lines/Dots Displays	F9	Toggles the trend graph from lines to dots, or dots to lines.
Toggle Mouse Position Tip	CTRL + F4	The graph's cursor follows the movement of the mouse while a hovering tooltip displays the exact coordinates of the current point.
Toggle Nearest Position Tip	CTRL + F9	The graph's cursor follows the movement of the mouse cursor.
Print	CTRL + P	Prints the trend graph.
Copy to clipboard	CTRL + C	Copies from the graph the raw detector data that was used to plot the selected trend graph. This data can be pasted into another application such as Microsoft Word or Microsoft Excel.
Paste from clipboard	CTRL + V	Plots a range of points copied from another application such as Microsoft Word or Microsoft Excel.

5.10 Editing the display properties of the graph

5.10.1 The graph bar

Use the graph bar buttons to change the display parameters of the graph.

Click **Edit** to view or change the display properties of the X and Y axes. The *Edit Graph* window displays.

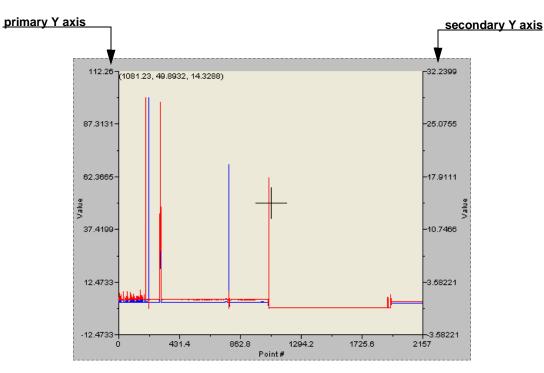

Edit Graph	X
X Axis Display Format	Max: 181
From: 6/ 2/2009 💌	5:17:49 PM
To: 6/ 3/2009 💌	8:50:45 AM
Date Format MM-DD-YYY	Y 💌
Primary Axis V Axis Display Format Percent Value Y Min: -20 Y Max: 20 Y Intervals: 5	Y Axis Display Format Y Axis Display Format Percent V Min: Y Min: Y Min: Y Max: Y Intervals: S
Print Speed: 0 X Intervals: 5	Display Option
Show labels	
Scroll newest X	OK Cancel

Figure 5-38. The Edit Graph window

Command	Description	Default Value
Point	Sets the X-axis values to points. For the purposes of this graph, each sample run is considered a data point. Therefore, if 2500 sample runs were used to generate the trend graph, then there are 2500 data points.	0
	NOTE : The X-axis value for the first sample, or point, in the trend graph is 0 , not 1. The X-axis value for the final point in the trend graph is N - 1, where N is the total number of points in the graph.	
	 X Min - Sets the minimum value for the X axis to the point number of the first sample you want to use in the plot. Default value is 0. X Max - Sets the maximum value for the X axis to the point number of the last sample you want to use in the plot. Default value is N - 1, where N is the total number of points in the graph. Therefore, if there are 2500 points, then the X Max would be 2499. 	
Date Time	 Sets the X-axis values to the particular GC dates and times of each sample runs. From - Sets the minimum value for the X axis to the date of the first sample you want to use in the plot. To - Sets the maximum value for the X axis to the date of the last sample you want to use in the plot. Date Format - Options are MM-DD-YYYY or DD-MM-YYYY. 	N/A

The following table lists the parameters that can be edited:

The primary Y axis is the default axis for displaying trend graphs. The secondary Y axis can be used to display a second graph whose minimum and maximum values are different than the minimum and maximum values of the first graph.

Figure 5-39. Primary axes

Note

If three or more graphs are displayed, only the second graph will be plotted using the secondary Y axis; all other graphs will be plotted with the primary Y axis.

Command	Description	Default Value
Y axis Display Format	 Percent - Sets the Y-axis values to a percentage of the Y Max value. Value - Sets the Y-axis values to the sample run values. 	0
Y Min	Sets the minimum value for the Y axis.	N/A
Y Max	Sets the maximum value for the Y axis.	N/A
Y Intervals	Sets the number of intervals to be displayed on the graph for the Y axis.	N/A

Command	Description	Default Value
Print Speed	Sets the number of inches per second for the x-axis while printing a chromatogram, similar to an XY plotter.	N/A
X Intervals	Sets the number of intervals to be displayed on the graph for the X axis.	10
Display Option	Determines whether the chromatograph is displayed as a solid line or as a dotted line.	Lines
Show labels	Determines whether each axis is labelled.	Checked
Scroll newest X	Determined whether the graph's window moves to focus on the most recent data point along the x axis.	Checked

To accept your changes, click **OK**.

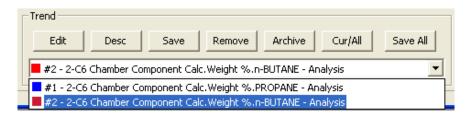
Click **Cursor** to toggle the cursor size from coarse movement (less accurate) to fine movement (more accurate).

Click **Print** to print the graph window.

5.11 Working with a trend graph

Trend
Edit Desc Save Remove Archive Cur/All Save All
#1 - 2-C6 Chamber Component Calc.Weight %.PROPANE - Analysis

The Trend bar contains a row of buttons that allows you to manipulate a single trend trace. Below the row of buttons is the trace pull-down menu, which contains a list of all of the currently displayed traces that make up the trend graph. Before you can work with a trend trace you must first select it from the pull-down menu.


5.11.1 Editing a trend graph

You can use the **Edit** window to change the X and Y offset values for a graph, change its color, and also set which Y axis should be used when plotting it. These changes may be necessary to make the trend more distinguishable from those that surround it, or to position a graph in relation to a different graph for comparison.

To edit a trend trace, do the following:

1. From the Trend pull-down menu, select the graph that you want to edit.

Figure 5-41. The Trend pull-down menu

2. Click Edit. The *Edit Trend* dialog displays.

Figure 5-42. The Edit Trend dialog

Unnormali	zed6/4/2009 10:16:35 A	AM 🛛 🔀
X Offset: Y Offset:	0	Add Trace to
Color:	Blue	C Secondary Axis
		OK Cancel

- **X Offset** Enter a positive number to move the trend to the right, or a negative number to move the trend to the left.
- **Y Offset** Enter a positive number to move the trend up, or a negative number to move the trend down.
- Color Assigns a color to the trend.

- Add Trace to Sets which Y axis should be used when plotting the graph. See "The graph bar" on page 5-54 for more information.
- 3. To accept your changes, click **OK**.

5.11.2 Entering a description for a trend graph

To add or change description text for a trend graph, do the following:

1. From the **Trend** bar, click **Desc**. The *Edit Description* window displays.

Figure 5-43. The Edit Description window

Edit Description	
2 - Stream 2 Component.Dry Gross BTU.METHANE - Analysis	
	OK Cancel


2. Type or edit a description and then close the window.

5.11.3 Saving a trend trace

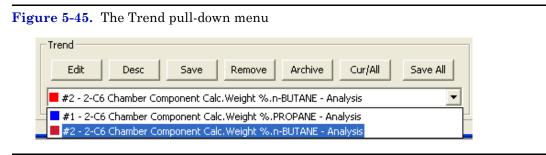
To save a trend trace to disk, do the following:

1. From the *Trend* pull-down menu, select the trace that you want to save. The Trend pull-down menu.

Figure 5-44. The Trend pull-down menu

2. Click Save. The Save Trend File window displays.

Note


To save all currently displayed trend traces into one file, click Save All.

3. For convenience the file is given an auto-generated file name that includes the current date and time; however, you can give the file any name that you choose. Click **Save**.

5.11.4 Removing a trend graph from view

To remove a trend graph from the graph display, do the following:

1. From the *Trend* pull-down menu, select the graph that you want to remove.

2. Click Remove.

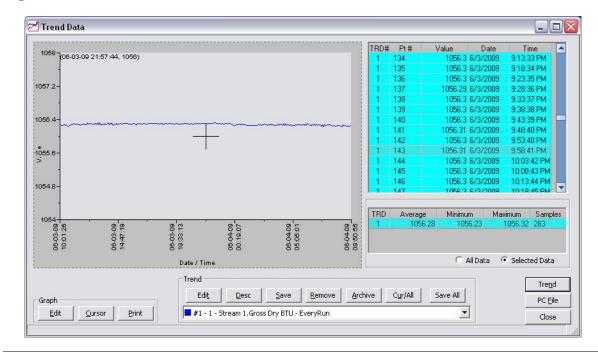
5.11.5 Displaying trend data

The data used to plot the trend graphs displays in the table to the right of the graph display area.

Figure 5-46. Trend data

TRD#	Pt#	Value	Date	Time	
1	80	0	6/3/2009	12:24:06 AM	
1	81	0	6/3/2009	12:29:07 AM	
1	82	0	6/3/2009	12:34:08 AM	
1	83	0	6/3/2009	12:39:09 AM	
1	84	0	6/3/2009	12:44:10 AM	
1	85	0	6/3/2009	12:49:11 AM	
1	86	0	6/3/2009	12:54:12 AM	
1	87	0	6/3/2009	12:59:12 AM	
1	88	0	6/3/2009	1:04:13 AM	
1	89	0	6/3/2009	1:09:14 AM	
1	90	0	6/3/2009	1:14:15 AM	
1	91	0	6/3/2009	1:19:16 AM	
1	92	0	6/3/2009	1:24:17 AM	
1	93	0	6/3/2009	1:29:18 AM	
1	94	0	6/3/2009	1:34:19 AM	-

The table contains the following columns:


Label	Description
TRD	Indicates the identifcation number of the trend graph.
Pt #	For the purposes of trend graphs, each sample run is considered a data point. Therefore, if 2500 sample runs were used to generate the trend graph, then there are 2500 data points. NOTE : The first sample, or point, is counted as 0, not 1. The final point is counted as $N - 1$, where N is the total number of points in the graph.
Value	The data point's value.
Data	The GC's date when the sample was run and the value was calculated.
Time	The GC's time when the sample was run and the value was calculated.

Note

To view the chromatogram that is associated with a particular trend data point, locate the data point in the table and double-click it while pressing the SHIFT key.

To view all trend data, click **Cur/All**. To view trend data for the trend graph selected from the Trend drop-down list, click **Cur/All** again.

The second trend data table is useful when zooming in to or out of the graph. When the *Selected Data* checkbox is selected, this table displays the trend data for the visible area of the graph. As the example shows, the table indicates that the trend data for five samples are visible after zooming in to the graph.

Figure 5-47. The Trend Data window

The table contains the following columns:

Label	Description
TRD	Indicates the identifcation number of the trend graph.
Average	Indicates the average data point value of the selected samples.
Minimum	Inidicates the lowest data point value of the selected samples.
Maximum	Inidicates the highest data point value of the selected samples.
Samples	Inidicates the number of samples that were selected and that are displayed in the graph window.

5.12 Generating a GC Configuration Report

A GC Config Report displays all current settings for the GC. This section explains how to produce a GC Config Report and provides an example for reference.

To generate a GC Config Report, do the following:

1. Select **GC Config Report...** from the **Logs/Reports** menu. The *GC Config Report* window displays.

Option	Select	Output
Analog Inputs		
Analog Outputs		C Eile
Average Calculations		
Component Data		
Control Calculations		Printer (with formfeeds)
Discrete Inputs		
Discrete Outputs		 Printer (without formfeeds)
Detectors		
Heaters		C Screen
Limit Alarms		- Deligoni
Reports		
Communication		
Streams		
System		The stars defined and a feature
Timed Events		☑ Use default printer
User-Defined Calculations		
Valves		
FFB PV Mappings		
System Alarms		
Validation Data		
Ethernet Ports		
LOI Status Variables		
Stream Sequence		T
Select All (F9)	Deselect All (F10)	Start (F4)

Figure 5-48. The GC Config Report window

2. Select the checkbox for each option that you want to include in the report.

Note

To select all the options, click Select All (F2). To clear all options, click Clear All (F3).

3. Select the type of output you want for the report.

Note

When choosing a Printer option, if you want to use a printer different from the one that you usually use, deselect the *Use default printer* checkbox and when the report is ready, the printer configuration window will display.

Note

When choosing the File option, the *Save* window will display, allowing you to name the text file and choose a location in which to save it.

4. Click **Start (F4)**. MON 20/20 will generate the customized report and print or save it, according to the output option you selected.

Note

A GC Config Report that includes all options can take several minutes to generate and save. Printing a full report can take longer. If you press ESC, MON 20/20 will stop after the current option is completed.

System Report from 1 03/12/2009 12:51:58			[SA	MPLE]		
Description	Val u	Э				
Stream Sequence Analyzer Name GC Model System Description Firmware Version GC Serial Number Company Name	1, 2, Aust GC70	in				
GC Location						
Number of Valves	3					
Number of Serial Po						
Daylight Saving Tim CGM Analog O/P Cfg.	0					
Baseline Offset						
Archive Days	0	******				
Component Data Table 03/12/2009 12:51:59		Model A	ustin			
Component Data Tabl	e #1					
Component	U/S D	et #	Retention Time (sec)		sponse Cal Factor	libration Con
C6+ 47/35/17	Standard	1	38.00		891250	0. 0000%
PROPANE	Standard	1	50. 16	4.6550	95e+07	0. 9995%
i -BUTANE	Standard	1	63.12	5. 5139	06e+07	0. 3000%
n-BUTANE	Standard	1	70.88	5.6107		0. 3000%
NEOPENTANE	Standard	1	0.00		0	0.0000%
I -PENTANE	Standard	1	101.92	6.3632		0. 1000%
n-PENTANE	Standard	1	113.84	6. 4876		0. 1000%
NI TROGEN METHANE	Standard Standard	1 1	141.68 145.80	3.8653 2.6792		2.4990%
CARBON DIOXIDE	Standard	1	178.68	3. 7957		89. 5920% 0. 9997%
ETHANE	Standard	1	206.20	4. 1666		5. 0000%
n-NONANE	Standard	2	34.80	9.0570		0. 0100%
n-HEXANE	Standard	2	105.00	5.6474		0. 0598%
n-HEPTANE	Standard	2	148.08	7.37	43e+08	0.0200%
n-OCTANE	Standard	2	255.96	7.5546	87e+08	0. 0201%
Component	Anal ysi s Method	RT Dev. (sec)		Update Method	Gross BTU	Net Dry BTU
C6+ 47/35/17	Fi xed	3	3 0.00	Cal	5288.7002	4900. 6001
PROPANE	Area	3		Cal	2522.0000	2320. 3999
i -BUTANE	Area	3		Cal	3259. 5000	3006. 8999

User Manual 3-9000-745

						SAMPLE cont.
n-BUTANE	Area	3	5.00	Cal	3269. 8999	3018.0000
NEOPENTANE	Fi xed	3	5.00	Cal	3993.8999	
i -PENTANE	Area	3	5.00	Cal	4010. 2000	
n-PENTANE	Area	3	5.00	Cal	4018.0000	
NI TROGEN	Area	3	5.00	Cal	0.0000	
METHANE	Area	3	5.00	Cal	1012.3000	
CARBON DI OXI DE	Area	4	5.00	Cal	0.0000	
ETHANE	Area	5	5.00	Cal	1773.8000	1622.8000
n-NONANE	Area	3	0.00	Cal	7012.6001	6508.0000
n-HEXANE	Area	3	0.00	Cal	4767.0000	4414.2002
n-HEPTANE	Area	4	0.00	Cal	5515. 2002	5111.7998
n-OCTANE	Area	5	0.00	Cal	6263.3999	5809. 3999
Component	Mol ecul ar Wei ght	AGA 8 Component	Rei (Vapoi		Relative Density Gas	
	0	·			5	5 1
C6+ 47/35/17	95.956	C6mi x1	3.02	0	3. 3135	0.6800
PROPANE	44.096	PROPANE	188.69	0	1. 5227	0.5074
i -BUTANE	58. 122	i -BUTANE	72.48	4	2.0071	0.5630
n-BUTANE	58. 122	n-BUTANE	51.68	3	2.0071	0. 5841
NEOPENTANE	72. 150	i - PENTANE	35.90	0	2.4911	0. 5967
i -PENTANE	72.149	i -PENTANE	20.45	6	2. 4914	0. 6246
n-PENTANE	72.149	n-PENTANE	15.55	8	2. 4914	0. 6311
NI TROGEN	28.013	NI TROGEN	0.00	0	0.9673	0.8069
METHANE	16.042	METHANE	5000.00	0	0. 5540	0.3000
CARBON DI OXI DE	44.010	C02	0.00	0	1. 5197	0.8220
ETHANE	30.069	ETHANE	800.00		1. 0383	
n-NONANE	128. 260	n-NONANE	0.17		4. 4289	
n-HEXANE	86. 175	n-HEXANE	4.96		2.9758	0.6640
n-HEPTANE	100.200	n-HEPTANE	1.62		3. 4601	
n-OCTANE	114. 230	n-OCTANE	0. 53	7	3. 9445	0. 7070
Component	HV Sup	HV Inf	HV Su	n	HV Inf	Rel ati ve
component	MJ/m3	MJ/m3	MJ/kę			esponse Factor
C6+ 47/35/17	196. 980	182.520	48.55	8	44.989	0.0
PROPANE	93.936	86.419	50.37		46.340	0.0
i -BUTANE	121.400	112.010	49.38		45.568	0.0
n-BUTANE	121.790	112.400	49.54		45.726	0.0
NEOPENTANE	148.760	137.490	48.75		45.060	0.0
i -PENTANE	149.360	138.090	48.95	0	45.255	0.0
n-PENTANE	149.660	138. 380	49.04	6	45.350	0.0
NI TROGEN	0.000	0.000	0.00	0	0.000	0.0
METHANE	37.707	33.949	55.57	6	50.037	0.0
CARBON DI OXI DE	0.000	0.000	0.00	0	0.000	0.0
ETHANE	66.067	60. 429	51.95	2	47.518	0.0
n-NONANE	261.190	242.400	48.15	3	44.689	0.0
n-HEXANE	177.550	164.400	48.71	7	45. 108	0.0

						SAMPLE con
n-HEPTANE	205.420	190. 3	90 48.	474	44. 927	0.0
n-OCTANE	233.290	216.3	70 48.	289	44.788	0.0
Component	Reference Component	MultiLe Calib		tiLevel lib'b'	MultiLevel Calib'c'	
C6+ 47/35/17	none					
PROPANE	none					
i -BUTANE	none					
n-BUTANE	none					
NEOPENTANE	none					
i -PENTANE	none					
n-PENTANE	none					
NI TROGEN	none					
METHANE	none					
CARBON DI OXI DE	none					
ETHANE	none					
n-NONANE	none					
n-HEXANE	none					
n-HEPTANE n-OCTANE	none					
Component Data Tak	ale #2					
Component Data Tak Component			Retention		•	alibration Cor
·			Retention ime (sec)		sponse Ca Factor	alibration Cor
·					•	alibration Cor 0.0204
Component	U/S De	Ti	ime (sec)	7	Factor	
Component C6+ 47/35/17	U/S De Standard	Ti 1	ime (sec) 26.50	7 4	Factor 697800	0. 0204
Component C6+ 47/35/17 PROPANE	U/S De Standard Standard	Ti 1 1	ime (sec) 26.50 46.90	7 4 4	Factor 697800 322000	0. 0204 0. 4995
Component C6+ 47/35/17 PROPANE i -BUTANE	U/S De Standard Standard Standard	T 1 1 1	ime (sec) 26.50 46.90 57.40	7 4 5	Factor 697800 322000 993200	0. 0204 0. 4995 0. 1012
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE	U/S De Standard Standard Standard Standard	Ti 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30	7 4 5 5	Factor 697800 322000 993200 085100	0. 0204 0. 4995 0. 1012 0. 1007
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE	U/S De Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10	7 4 5 5 5	Factor 697800 322000 993200 085100 673100	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0495 0. 0503
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN	U/S De Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40	7 4 5 5 5 5 5	Factor 697800 322000 993200 085100 673100 683100	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0495 0. 0503 0. 5984
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00	7 4 5 5 5 5 3 2	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50	7 4 5 5 5 5 3 2 3	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60	7 4 5 5 5 5 3 2 3	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50	7 4 5 5 5 5 3 2 3	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10	7 4 5 5 5 5 3 2 3 4	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992 0. 0000
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	T 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60	7 4 5 5 5 5 3 2 3	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10 RT Dev.	7 4 5 5 5 3 2 3 4 Update	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992 0. 0000
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S Component	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10 RT Dev. (%)	7 4 5 5 5 3 2 3 4 Update Method	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0 Gross BTU	0.0204 0.4995 0.1012 0.1007 0.0503 0.0499 0.0503 0.5984 97.1310 0.3991 0.9992 0.0000
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S Component C6+ 47/35/17 PROPANE	U/S De Standard	Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10 RT Dev. (%) 5.00	7 4 5 5 5 3 2 3 4 Update Method Cal	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0 Gross BTU 5288.7100	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992 0. 0000 Net Dry BTU 4900. 6201
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S Component C6+ 47/35/17 PROPANE i -BUTANE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10 RT Dev. (%) 5.00 5.00	7 4 5 5 5 3 2 3 4 Update Method Cal Cal	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0 Gross BTU 5288.7100 2522.0200	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992 0. 0000 Net Dry BTU 4900. 6201 2320. 3601
Component C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE	U/S De Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ime (sec) 26.50 46.90 57.40 64.30 70.10 89.40 99.90 143.40 147.00 179.50 208.60 300.10 RT Dev. (%) 5.00 5.00 5.00	7 4 5 5 5 3 2 3 4 Update Method Cal Cal Cal	Factor 697800 322000 993200 085100 673100 683100 731600 080000 362600 568900 078100 0 Gross BTU 5288.7100 2522.0200 3259.5000	0. 0204 0. 4995 0. 1012 0. 1007 0. 0503 0. 0499 0. 0503 0. 5984 97. 1310 0. 3991 0. 9992 0. 0000 Net Dry BTU 4900. 6201 2320. 3601 3006. 8995

				S	SAMPLE cont
n-PENTANE	area	0	5.00 Cal	4017. 9700	3715. 5801
NI TROGEN	area	0	5.00 Ca	0.0000	0.0000
METHANE	area	0	5.00 Cal	1012.3400	911.1030
CARBON DI OXI DE	area	0	5.00 Ca		0.0000
ETHANE	area	0	5.00 Cal		1622.7500
H2S	area	0	0.00 Cal		588.1600
Component	Mol ecul ar	AGA 8	Rei d	Rel ati ve	Rel ati ve
	Weight	Component	Vapor	Density Gas	Density Lqd
C6+ 47/35/17	95.956	C6mi x1	3. 020	3. 3135	0. 6800
PROPANE	44.096	PROPANE	188. 690	1.5227	0. 5074
i -BUTANE	58. 122	i -BUTANE	72.484	2.0071	0. 5630
n-BUTANE	58. 122	n-BUTANE	51.683	2.0071	0. 5841
NEOPENTANE	72. 150	i -PENTANE	35. 900	2. 4911	0. 5967
i -PENTANE	72.149	i -PENTANE	20. 456	2. 4914	0. 6246
n-PENTANE	72.149	n-PENTANE	15.558	2. 4914	0. 6311
NI TROGEN	28.013	NI TROGEN	0.000	0.9673	0.8069
METHANE		METHANE	5000.000	0. 5540	
	16.042				0.3000
CARBON DI OXI DE	44.010	CO2	0.000	1.5197	0.8220
ETHANE	30.069	ETHANE	800.000	1.0383	0.3564
H2S	34.082	H2S	395. 550	1. 1769	0. 8027
^	HV Sup	HV Inf	HV Sup	HV Inf	Rel ati ve
Component					
Component	MJ/m3	MJ/m3	MJ/kg	MJ/kg Res	sponse Factor
Component C6+ 47/35/17	MJ/m3		0		
C6+ 47/35/17	MJ/m3 196.980	182.520	48. 558	44.989	0.0
C6+ 47/35/17 PROPANE	MJ/m3 196.980 93.936	182. 520 86. 419	48. 558 50. 370	44. 989 46. 340	0. 0 0. 0
C6+ 47/35/17 PROPANE i -BUTANE	MJ/m3 196.980 93.936 121.400	182. 520 86. 419 112. 010	48. 558 50. 370 49. 389	44.989 46.340 45.568	0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE	MJ/m3 196.980 93.936 121.400 121.790	182. 520 86. 419 112. 010 112. 400	48. 558 50. 370 49. 389 49. 547	44. 989 46. 340 45. 568 45. 726	0.0 0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE	MJ/m3 196.980 93.936 121.400 121.790 148.760	182. 520 86. 419 112. 010 112. 400 137. 490	48. 558 50. 370 49. 389 49. 547 48. 750	44. 989 46. 340 45. 568 45. 726 45. 060	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255	0.0 0.0 0.0 0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350	0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000 66.067	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000 66.067	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000 60. 429	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000 51. 952	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000 47. 518 15. 200	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	MJ/m3 196. 980 93. 936 121. 400 121. 790 148. 760 149. 360 149. 660 0. 000 37. 707 0. 000 66. 067 23. 785	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000 60. 429 21. 910	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000 51. 952 16. 501	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000 47. 518 15. 200 Mul ti Level	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000 66.067 23.785	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000 60. 429 21. 910 Mul ti Level	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000 51. 952 16. 501 Mul ti Level	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000 47. 518 15. 200 Mul ti Level	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000 66.067 23.785 Reference Component	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000 60. 429 21. 910 Mul ti Level	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000 51. 952 16. 501 Mul ti Level	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000 47. 518 15. 200 Mul ti Level	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
C6+ 47/35/17 PROPANE i -BUTANE n-BUTANE NEOPENTANE i -PENTANE n-PENTANE NI TROGEN METHANE CARBON DI OXI DE ETHANE H2S Component	MJ/m3 196.980 93.936 121.400 121.790 148.760 149.360 149.660 0.000 37.707 0.000 66.067 23.785 Reference Component none	182. 520 86. 419 112. 010 112. 400 137. 490 138. 090 138. 380 0. 000 33. 949 0. 000 60. 429 21. 910 Mul ti Level	48. 558 50. 370 49. 389 49. 547 48. 750 48. 950 49. 046 0. 000 55. 576 0. 000 51. 952 16. 501 Mul ti Level	44. 989 46. 340 45. 568 45. 726 45. 060 45. 255 45. 350 0. 000 50. 037 0. 000 47. 518 15. 200 Mul ti Level	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

					SA	MPLE cont.
NEOPENTANE		none				
i -PENTANE		none				
n-PENTANE		none				
NI TROGEN		none				
METHANE		none				
CARBON DIO	XI DE	none				
ETHANE		none				
H2S		none				
Component	Data Table #3					
Component	Data Table #4					
****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * *
Timed From	t Table Report fro	m Model Austi	n			
iimea Even						
	12: 52: 01 PM					
03/12/2009	12:52:01 PM					
03/12/2009 Timed Even	12:52:01 PM t Table #1 -					
03/12/2009	12:52:01 PM t Table #1 -	State	Time (Sec)			
03/12/2009 Timed Even Hardware T TEV Type	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 #	State	Time (Sec)			
03/12/2009 Timed Even Hardware T TEV Type Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1	State On	Time (Sec) O.O			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2	State On On	Time (Sec) 0.0 1.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column	State On On On	Time (Sec) 0.0 1.0 2.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1	State On On On On	Time (Sec) 0.0 1.0 2.0 5.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve # Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column	State On On On	Time (Sec) 0.0 1.0 2.0 5.0 6.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve #	12:52:01 PM t Table #1 - EV table 1 Valve/ DO # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2	State On On On On	Time (Sec) 0.0 1.0 2.0 5.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve # Val ve # Strm Sw	12:52:01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1	State On On On On On	Time (Sec) 0.0 1.0 2.0 5.0 6.0 11.0			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve # Strm Sw Val ve #	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1	State On On On On On Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve # Val ve # Val ve # Val ve # Strm Sw Val ve # Val ve # Val ve #	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 SSO_2	State On On On On Off Off	Time (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1	State On On On On Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1 S/BF_2	State On On On On Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0			
03/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Col umn S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1 S/BF_2 Dual Col umn Dual Col umn	State On On On On Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0 43.5			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Col umn S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1 S/BF_2 Dual Col umn Dual Col umn	State On On On On Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0 43.5			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1 S/BF_2 Dual Column Dual Column EV table 1	State On On On On Off Off Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0 43.5 132.5			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 S/BF_1 S/BF_2 Dual Column Dual Column EV table 1 Value	State On On On On Off Off Off Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0 43.5 132.5 Ti me (Sec)			
O3/12/2009 Ti med Even Hardware T TEV Type Val ve # Val ve * Val v	12: 52: 01 PM t Table #1 - EV table 1 Valve/ D0 # SSO_1 SSO_2 Dual Column S/BF_1 S/BF_2 SSO_1 SSO_2 S/BF_1 S/BF_2 Dual Column Dual Column EV table 1 Value On On	State On On On On Off Off Off Off Off Off Off	Ti me (Sec) 0.0 1.0 2.0 5.0 6.0 11.0 15.0 16.0 26.5 28.0 43.5 132.5 Ti me (Sec) 0.0			

				SAMPLE cont.
SI ope Sens	48	1	3.0	
Peak Width	4	1	4.0	
I nhi bi t	0ff	2	31.3	
I nhi bi t	0ff	1	33.0	
Inhi bi t	0n	2	38.5	
I nhi bi t	0n	1	43.5	
I nhi bi t	0ff	1	48.0	
I nhi bi t	0ff	2	72.5	
Summation	0n	2	72.6	
I nhi bi t	0n	1	85.0	
I nhi bi t	0ff	1	87.0	
Summation	0ff	2	105.0	
Inhi bi t	0n	1	133.0	
Peak Width	2	1	134.0	
SI ope Sens	16	1	134.5	
Inhi bi t	0ff	1	137.5	
I nhi bi t	0n	2	170.0	
Inhi bi t	0n	1	170.0	
Peak Width	8	2	170.5	
I nhi bi t	0ff	2	171.0	
Peak Width	8	1	171.0	
SI ope Sens	48	1	171.5	
Inhibit	0ff	1	172.0	
I nhi bi t	0n	1	290.0	
I nhi bi t	0n	2	291.0	
Gain TEV ta	able 1			
		ime		
	(Se	ec)		
1	4 (0. 0		
2	4 (0. 0		
Timed Even	t Table #2 -			
Hardware T				
TEV Type	Valve/ D0	# State	Time	
		, otato	(Sec)	
			()	
Val ve #	SS0_1	0n	0.0	
Val ve #	SS0_2	0n	0.0	
Valve #	Dual Col umn	0n	2.0	
Val ve #	S/BF_1	0ff	5.0	
valve π	S/BF_2	0ff	6.0	
			11.0	
Valve #				
Valve # Strm Sw	S/BF 2	0ff	24.5	
Valve # Strm Sw Valve #	S/BF_2 S/BF_1	Off Off	24.5 25.5	
Valve # Strm Sw Valve # Valve #	S/BF_1	0ff	25.5	
Valve # Strm Sw Valve # Valve # Valve #	S/BF_1 SS0_1	Off Off	25.5 40.0	
Valve # Strm Sw Valve # Valve # Valve # Valve #	S/BF_1 SS0_1 SS0_2	Off Off Off	25.5 40.0 40.0	
Val ve # Val ve #	S/BF_1 SS0_1	Off Off	25.5 40.0	

User Manual	
3-9000-745	

				SAMPLE
Software TEV	table 2			
TEV Type	Value	Det #	Ti me	
51			(Sec)	
l phi hi t	On	1	0.0	
Inhibit Inhibit	On On	1 2	0.0 0.0	
Peak Width	2	2	0.0	
Peak Width	2	2	0.0	
nhi bi t	2 Off	1	0.1	
nhi bi t	Off	2	0.1	
nhi bi t	On	1	285.0	
Inhi bi t	On	2	285.0	
	on	2	200.0	
Gain TEV tab				
Det# Gai				
	(Sec)			
1 1	2 0.0			
	2 0.0 2 0.0			
<u> </u>	2 0.0			
Timed Typet	Table #2			
Timed Event Hardware TEV				
	Valve/ D0 #	State	Ti me	
lev Type		State	(Sec)	
			(300)	
Valve #	SS0_1	0n	0.0	
	SS0_2	0n	1.0	
	Dual Col umn	0n	2.0	
Valve #	S/BF_1	0n	5.0	
Valve #	S/BF_2	0n	6.0	
Strm Sw	_		11.0	
	SS0_1	0n	15.0	
	SS0_2	0n	16.0	
	S/BF_1	0n	26.5	
	S/BF_2	0n	28.0	
	Dual Col umn	0ff	42.5	
Valve #	Dual Col umn	0n	133.0	
Software TEV		_		
ГЕV Туре	Val ue	Det #	Time	
			(Sec)	
Inhi bi t	On	1	0.0	
Inhi bi t	0n	2	0.0	
SLope Sens	48	1	3.0	
Peak Width	2	1	3.5	
SLope Sens	48	2	4.0	
	2	2	4.5	

												SAMPI	E co	ont.
Inhi bi t	0	ff			1		5.	0						
Inhi bi t	0	ff			2		5.	5						
l nhi bi t	0	n			1		13.	0						
Inhi bi t	0	n			2		13.							
I nhi bi t		ff			1		25.							
I nhi bi t		n			1		27.							
Inhi bi t	0	ff			1		28.	0						
I nhi bi t		ff			2		28.							
I nhi bi t		n			2		31.							
Inhi bi t		n			1		34.							
Inhi bi t		n			1		45.							
Inhibit		n			1		48.							
I nhi bi t		ff			1		133.							
I nhi bi t		n			1		141.							
Gain TEV	table 3													
Det #	Gain	Time												
	Gurn	(Sec)												
1	4	0.0												
2	4	0.0												
Software Gain TEV	TEV table TEV table table 4	4	* * * * :	* * * * :	* * * *	* * * * *	****	*						
Software Gain TEV ******** Cal cul ati	TEV table table 4	4 ********* I Report				***** Austi		* *						
Software Gain TEV ******** Cal cul ati 03/12/200	TEV table table 4 ********** i on Contro 09 12:52:0	4 ********* I Report	from	Mode	el .	Austi	n		7	8				
Software Gain TEV ******** Cal cul ati 03/12/200 Descripti	TEV table table 4 ********** i on Contro 09 12: 52: 0 i on	4 ********* I Report 2 PM	from 1			Austi 4	n 5	6	7 N	8 N				
Software Gain TEV ******** Cal cul ati 03/12/200 Descripti Average I	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar	4 ********* I Report 2 PM	from 1 N	Mode 2 Y	el 3 N	Austi 4 N	n 5 N	6 N	Ν	Ν				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent	4 ********* I Report 2 PM	from 1	Mode 2	el . 3	Austi 4	n 5	6		N Y				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume	4 ********* I Report 2 PM	from 1 N Y Y	Mode 2 Y Y Y	el 3 N N N	Austi 4 N N N	n 5 N Y N	6 N Y N	N Y N	N Y N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Per	TEV table table 4 ********** i on Contro 09 12:52:0 i on Li mi t Al ar cent ol ume ercent	4 ********* I Report 2 PM	from 1 N Y Y Y	Mode 2 Y Y Y Y	el 3 N N N N	Austi 4 N N N N	n 5 N Y N N	6 N Y N	N Y N N	N Y N N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize	TEV table table 4 ********** i on Contro 09 12: 52: 0 i on Li mi t Al ar cent ol ume ercent e Resul ts	4 ********* I Report 2 PM	from 1 N Y Y	Mode 2 Y Y Y	el 3 N N N N N	Austi 4 N N N	n 5 N Y N	6 N Y N	N Y N	N Y N N Y				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi	TEV table table 4 ********** i on Contro 09 12: 52: 0 i on Li mi t Al ar cent ol ume ercent e Resul ts i ty	4 ********* I Report 2 PM m Test	from 1 N Y Y N N	Mode 2 Y Y Y Y Y N	el 3 N N N N N N	Austi 4 N N N N N N	n 5 N Y N Y N Y N	6 N Y N Y N	N Y N Y N	N Y N Y N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel	TEV table table 4 ********** i on Contro 09 12: 52: 0 i on Li mi t Al ar cent ol ume ercent e Resul ts i ty Den Gas P	4 ********* I Report 2 PM m Test rim	from 1 N Y Y N N Y	Mode 2 Y Y Y Y Y N Y	el 3 N N N N N N N	Austi 4 N N N N N N N	n 5 N Y N Y N Y N	6 N Y N Y N N	N Y N Y N	N Y N Y N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Inc	TEV table table 4 ********** i on Contro 09 12: 52: 0 i on Li mit Al ar cent ol ume ercent e Resul ts i ty Den Gas P dex Sup Se	4 ********* I Report 2 PM m Test rim	from 1 N Y Y N N Y Y	Mode 2 Y Y Y Y Y N	el 3 N N N N N N N N	Austi 4 N N N N N N N N N	n 5 N Y N Y N Y N	6 N Y N Y N N N N	N Y N Y N	N Y N Y N N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pero	TEV table table 4 ********** i on Contro 09 12:52:0 i on Li mit Alar cent ol ume ercent e Results i ty Den Gas P dex Sup Se rim	4 ********* I Report 2 PM m Test rim	from 1 N Y Y N N Y	Mode Y Y Y Y Y N Y Y Y Y	el 3 N N N N N N N N N N	Austi 4 N N N N N N N N N N	n 5 N Y N N 7 N N 8 N 8 N 8 N 8 N 8 N	6 N Y N Y N N N N N	N Y N Y N N N	N Y N Y N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Li quid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pr Dry Gross	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating	4 ********* I Report 2 PM m Test rim	from 1 N Y Y N N Y Y Y Y	Mode Y Y Y Y Y N Y Y Y Y	el 3 N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N	n 5 N Y N N 7 N N N N N N N	6 N Y N N Y N N N N N	N Y N Y N N N	N Y N Y N N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pr Dry Gross Sat Gross	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating s Heating	4 ********* I Report 2 PM m Test rim c	from 1 N Y Y N N Y Y Y Y	Mode 2 Y Y Y Y Y Y Y Y Y Y	B 3 N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N	6 N Y N N N N N N N	N Y N Y N N N N	N Y N Y N N N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pr Dry Gross Sat Gross Wobbe Ino	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr	4 ********* I Report 2 PM m Test rim c	from 1 N Y Y N N Y Y Y Y Y Y	2 Y Y Y Y Y Y Y Y Y Y Y Y	Bel 3 N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N	n 5 N Y N N 7 N N N N 8 N 8 N 8 N	6 N Y N N N N N N N N	N Y N Y N N N N N	N Y N Y N N N N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Per Dry Gross Sat Gross Wobbe Ino Wobbe Ino	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating s Heating dex Sup Pr dex Inf Se	4 ********* I Report 2 PM m Test rim c	from 1 N Y Y N N Y Y Y Y Y Y Y	2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Bel 3 N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N	6 N Y N N N N N N N N N N	N Y N N Y N N N N N N N	N Y N Y N N N N N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pi Dry Gross Sat Gross Wobbe Ino Gallons/	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr dex Inf Se 1000 SCF C	4 ********* I Report 2 PM m Test m Test im c 2+	from 1 N Y Y N N Y Y Y Y Y Y Y Y	2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y	el 3 N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N	6 N Y N N N N N N N N N N	N Y N N Y N N N N N N N N	N Y N N N N N N N N N				
Software Gain TEV ********* Cal cul ati 03/12/200 Descripti Average I Mole Pero Liquid Vo Weight Pero Normalize Gas Densi Real Rel Wobbe Ino Z Fact Pi Dry Gross Sat Gross Wobbe Ino Gallons/ Gallons/	TEV table table 4 ********** ion Contro 09 12:52:0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr dex Inf Se 1000 SCF C	4 ********* I Report 2 PM m Test m Test im c 2+ 3+	from 1 N Y Y N N Y Y Y Y Y Y Y	Mode 2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	el 3 N N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N	6 N Y N N N N N N N N N N N N N	N Y N N Y N N N N N N N N N N N	N Y N N N N N N N N N N N				
Software Gain TEV ********* Calculati 03/12/200 Descripti Average I Mole Perc Liquid Vo Weight Perc Normalize Gas Densi Real Rel Wobbe Inc Z Fact Pr Dry Gross Sat Gross Wobbe Inc Gallons/ Gallons/ Gallons/	TEV table table 4 ********** ion Contro 09 12: 52: 0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr dex Inf Se 1000 SCF C 1000 SCF C	4 ********* I Report 2 PM m Test m Test rim c im c 2+ 3+ 4+	from 1 N Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y	Mode 2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	el 3 N N N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N	6 N Y N N Y N N N N N N N N N	N Y N N Y N N N N N N N N	N Y N N Y N N N N N N N N N N N				
Software Gain TEV ************************************	TEV table table 4 ********** ion Contro 09 12: 52: 0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr dex Inf Se 1000 SCF C 1000 SCF C	4 ********** I Report 2 PM m Test m Test im c 2+ 3+ 4+ 5+	from 1 N Y Y Y Y Y Y Y Y Y Y Y Y Y	Mode 2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	21 3 N N N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N N	6 N Y N N Y N N N N N N N N N N	N Y N N Y N N N N N N N N N N N N N N N	N Y N Y N N N N N N N N N N				
Software Gain TEV ************************************	TEV table table 4 ********* ion Contro 09 12: 52: 0 ion Limit Alar cent olume ercent e Results ity Den Gas P dex Sup Se rim s Heating dex Sup Pr dex Inf Se 1000 SCF C 1000 SCF C 1000 SCF C	4 ********** I Report 2 PM m Test m Test im c 2+ 3+ 4+ 5+	from 1 N Y Y Y Y Y Y Y Y Y Y Y Y Y	Mode 2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	el 3 N N N N N N N N N N N N N N N N N N	Austi 4 N N N N N N N N N N N N N N N N N N	n 5 N Y N N Y N N N N N N N N N N N N	6 N Y N N Y N N N N N N N N N	N Y N N Y N N N N N N N N N N N N N N N	N Y N N Y N N N N N N N N N N N				

User Manual 3-9000-745

										SAMPLE	cont
											cont.
Sup Calorific V	al Dry Prim	N N	I N	Ν	Ν	Ν	Ν	Ν			
Sup Calorific V		N N	I N	Ν	Ν	Ν	Ν	Ν			
Inf Calorific V		N N	I N	Ν	Ν	Ν	Ν	Ν			
Inf Calorific V	al Sat Prim	N N	I N	Ν	Ν	Ν	Ν	Ν			
Sup Calorific V	al Dry Sec	N N	I N	Ν	Ν	Ν	Ν	Ν			
Sup Calorific V	al Sat Sec	N N	I N	Ν	Ν	Ν	Ν	Ν			
Inf Calorific V	5	N N	I N	Ν	Ν	Ν	Ν	Ν			
Inf Calorific V		N N		Ν	Ν	Ν	Ν	Ν			
Wobbe Index Inf		N N		N	N	N	N	N			
Real Rel Den Ga	s Sec	N N		N	N	N	N	N			
Gas Den Kg/m3	* * * * * * * * * * * * *	N N		N ****	N * * * *	N * * * *	N * * * *	N * * *			
Calculation Ave	rage Report f	rom Mc	odel	Austi	in						
03/12/2009 12:5											
Average Label	Variable Na	me									
Average 001	1-C9 Cal Ga	is Gros	s Drv	BTU							
Average 002	Heaters. Tem				1						
Average 003	Heaters. Tem										
Average 004	Heaters. Tem										
Average 005	1-C9 Cal Ga					ea.ME	THAN	IE			
Average 006	1-C9 Cal Ga										
0						0					
	A				Dee	..	т:	-	Weeksley	Davi	
Average Label	Average Typ	be	Hours		Res		Tim h:mm		Weekday	Day	
						(II	1. 11111)			
Average 001	Everyrun										
Average 002	Everyrun										
Average 003	Everyrun										
Average 004	Everyrun										
Average 005	Everyrun										
Average 006	Everyrun										
Ū.	5										
***********	* * * * * * * * * * * * * *	******	*****	* * * *	* * * *	* * * *	* * * *	* * * *	* * * * * * * * * * *	* * * * * *	
		and C		ا ما م	A	L : /-					
Calculation Use		ort fr	om Mo	del	Aus	tin					
03/12/2009 12:5	Z:U3 PM										
Label	Commen	+									
	Commen	L									
User Cal 01											

			SAMPI	E cont
Label	Cal Freq.	Start Time	Interval	
		(mm-dd-yyyy hh:mm:ss)	(sec)	
User Cal 01	User Defined	01-01-1970 00: 00: 00	5	
****	*****	****	* * * * * * * * *	
Limit Alerme	Depart from Model Austin	~		
03/12/2009 12	Report from Model Austi :52:04 PM	11		
System Alarm	Table -			
Label	Vari abl e			
Alarm 001	El ectroni c Pressure (Control.Status.EPC1		
Alarm 002	Electronic Pressure (Control . Status. EPC2		
Alarm 003	Electronic Pressure (Control.Status.EPC3		
Alarm 004	El ectroni c Pressure (
Alarm 005	El ectroni c Pressure (Control. Status. EPC5		
Alarm 006	Val ves. Status. S/BF_1			
Alarm 007	Val ves. Status. Dual Col	umn		
Alarm 008	Val ves. Status. S/BF_2			
Alarm 009	Val ves. Status. SSO_1			
Alarm 010	Val ves. Status. SSO 2			
Alarm 011	Val ves. Status. Stream	1		
Alarm 012	Val ves. Status. Stream	2		
Alarm 013	Val ves. Status. Stream	3		
Alarm 014	Val ves. Status. Stream	4		
Alarm 015	Val ves. Status. unused	1		
Alarm 016	Val ves. Status. unused	2		
Alarm 017	Val ves. Status. unused	3		
Alarm 018	Heaters. Status. Heater	^ 1		
Alarm 019	Heaters. Status. Heater	^ 2		
Alarm 020	Heaters. Status. Heater	~ 3		
Alarm 021	Heaters. Status. Heater	~ 4		
Alarm 022	Detectors. Status. TCD	1		
Alarm 023	Detectors. Status. TCD	2		
Alarm O24	Detectors.Scaling Fa	ctor.TCD 1		
Alarm 025	Detectors.Scaling Fac	ctor.TCD 2		
Alarm O26	Streams. Status. 1-C9 (Cal Gas		
Alarm O27	Streams. Status. 2-C6 (Chamber		
Alarm 028	Streams. Status. Stream	n 3		
Alarm 029	Streams. Status. Stream			
Alarm 030	Streams. Status. Stream			
Alarm 031	Streams. Status. Stream			
Alarm 032	Streams. Status. Stream			
Alarm 033	Streams. Status. Stream	n 8		
Alarm 034	GC Status. Status			
	GC Status.Warmup Stat	tus		
Alarm 035 Alarm 036	GC Status. Is Last Cal			

				SAMPLE cont.
Alarm 037	1-C9 Cal Gas F	inal Calib.RF De	v Alarm	
Alarm 038		inal Calib.RF De		
Alarm 039		Calib. RF Dev Al		
Alarm 040	Stream 4 Final	Calib.RF Dev Al	arm	
Alarm 041		Calib. RF Dev Al		
Alarm 042		Calib. RF Dev Al		
Alarm 043	Stream 7 Final	Calib.RF Dev Al	arm	
Alarm 044	Stream 8 Final	Calib.RF Dev Al	arm	
Alarm 045	System Status.	ls User Calculat	ion Failed	
	-			
Label	Туре	Low Limit	High Limit	DO# to Set
Alarm 001	Hi gh		3	
Alarm 002	High		3	
Alarm 003	High		3	
Alarm 004	High		3	
Alarm 005	High		3	
Alarm 006	High		3	
Alarm 007	High		3	
Alarm 008	High		3	
Alarm 009	High		3	
Alarm 010	High		3	
Alarm 011	High		3	
Alarm 012	High		3	
Alarm 013	High		3	
Alarm 014	High		3	
Alarm 015	Hi gh		3	
Alarm 016	High		3	
Alarm 017	High		3	
Alarm 018	High		3	
Alarm 019	Hi gh		3	
Alarm 020	High		3	
Alarm O21	Hi gh		3	
Alarm 022	High		4	
Alarm 023	Hi gh		4	
Alarm O24	Hi gh		12.19999981	
Alarm 025	Hi gh		12.19999981	
Alarm O26	Hi gh		1	
Alarm 027	Hi gh		1	
Alarm 028	High		1	
Alarm 029	High		1	
Alarm 030	Hi gh		1	
Alarm 031	High		1	
Alarm 032	High		1	
Alarm 033	High		1	
Alarm 034	High		1	
Alarm 035	High		1	
Alarm 036	High		2	
Alarm 037	High		1	
L				

		SAMPLE cont.
Alarm 038	Hi gh	1
Alarm 039	High	1
Alarm 040	High	1
Alarm 041	High	1
Alarm 042	High	1
Alarm 043	High	1
Alarm 044	High	1
Alarm 045	High	1
	3	
Labol	Inhibit Inhibit	Inhibit User Alarm
Label		
	Calcs Average	Alarm Text Text
Alarm 001	False False	FalseMSG_SWITCH{3: Config Error}{4: Out of
Control }{5:Inte Alarm 002	False False	FalseMSG_SWITCH{3: Config Error}{4: Out of
Control }{5: Inte	ernal Error}	
Alarm 003 Control }{5: Inte	False False	FalseMSG_SWITCH{3: Config Error}{4:Out of
Alarm 004	False False	FalseMSG_SWITCH{3:Config Error}{4:Out of
Control }{5: Inte	•	
Alarm 005 Control }{5: Inte	False False	FalseMSG_SWITCH{3: Config Error}{4: Out of
Alarm 006	False False	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL (Close Failed}{6:HAL I	ntrnl Err}{7: Protocol Err}{8: Device Intrnl Err}{9: Unkn
own Device}{10:l	<pre>Jnder/Over Current}{1</pre>	1:Time Out}
Alarm 007	False False	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL (Close Failed}{6:HAL I	ntrnl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
own Device}{10:l	Jnder/Over Current}{1	
Alarm 008	Fal se Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL (Close Failed}{6:HAL I	ntrnl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
own Device}{10:l	Jnder/Over Current}{1	
Alarm 009	Fal se Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
		ntrnl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
	Inder/Over Current}{1	
Alarm 010	Fal se Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
		ntrnl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
	Inder/Over Current}{1	
Alarm 011	Fal se Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
		ntrnl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
,,	Inder/Over Current}{1	
Alarm 012	False False	FalseMSG_SWITCH_{3:Intrnl Err}{4:HAL Open
		ntrnl Err}{7: Protocol Err}{8: Device Intrnl Err}{9: Unkn
	Jnder/Over Current}{1	-
Alarm 013	False False	FalseMSG_SWITCH{3: Intrnl Err}{4: HAL Open
		ntrnl Err}{7: Protocol Err}{8: Device Intrnl Err}{9: Unkn
	Jnder/Over Current}{1	-
Alarm 014	False False	FalseMSG_SWITCH{3: IntrnL Err}{4: HAL Open
		ntrnl Err}{7: Protocol Err}{8: Device Intrnl Err}{9: Unkn
own Device}{10:1	Jnder/Over Current}{1	I: IIme Oul}

			SAMPLE cont.
Alarm 015	Fal se	Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL C	lose Failed	{6:HAL Intr	nl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
own Device}{10:U	nder/Over Ci	urrent}{11:T	<pre>ime Out}</pre>
Alarm 016	Fal se	Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL C	lose Failed	{6:HAL Intr	nl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
own Device}{10:U			
Alarm 017	Fal se	Fal se	FalseMSG_SWITCH{3:Intrnl Err}{4:HAL Open
Failed}{5:HAL C	lose Failed	{6:HAL Intr	nl Err}{7:Protocol Err}{8:Device Intrnl Err}{9:Unkn
own Device}{10:U	nder/Over Cu	urrent}{11:T	ïme Out}
Alarm 018	Fal se	Fal se	FalseMSG_SWITCH{3:Out of Range}{4:Intern
al Error}			
Alarm 019	Fal se	Fal se	FalseMSG_SWITCH{3:Out of Range}{4:Intern
al Error}			
Alarm 020	Fal se	Fal se	FalseMSG_SWITCH{3:Out of Range}{4:Intern
al Error}			
Alarm 021	Fal se	Fal se	FalseMSG_SWITCH{3:Out of Range}{4:Intern
al Error}			
Alarm 022	Fal se	Fal se	False Internal Error
Alarm 023	Fal se	Fal se	False Internal Error
Alarm 024	False	False	False Out Of Limit
Alarm 025	False	False	False Out Of Limit
Alarm 026	False	False	False Stream Skipped
Alarm 027	False	False	False Stream Skipped
Alarm 028	Fal se	False	False Stream Skipped
Alarm 029	Fal se	Fal se	False Stream Skipped
Alarm 030	Fal se	Fal se Fal se	False Stream Skipped
Alarm 031	Fal se Fal se	Fal se	False Stream Skipped False Stream Skipped
Alarm 032 Alarm 033	Fal se	Fal se	False Stream Skipped False Stream Skipped
Alarm 034	Fal se	Fal se	FalseMSG_SWITCH{1: Stream Sequence Table
			3: Invalid Stream Sequence/Stream Not Configured}{4:
Stream Sequence			
Al arm 035	Fal se	False	Fal seMSG_SWITCH{0: Success}{1: Fai ure}
Alarm 036	False	False	False Missing Peak/Component During Calibration
Alarm 037	False	False	False Response Factor is Out of Limit
Alarm 038	False	False	False Response Factor is Out of Limit
Alarm 039	False	False	False Response Factor is Out of Limit
Alarm 040	False	False	False Response Factor is Out of Limit
Alarm 041	Fal se	Fal se	False Response Factor is Out of Limit
Alarm 042	Fal se	Fal se	False Response Factor is Out of Limit
Alarm 043	Fal se	Fal se	False Response Factor is Out of Limit
Alarm 044	Fal se	Fal se	False Response Factor is Out of Limit
Alarm 045	Fal se	Fal se	False User calculation failed

User Manual 3-9000-745

							SAM	PLE cont.
User Alarm Table	9 -							
****	* * * * * * * * * * *	*****	* * * * * * * *	* * * * * * * * * *	* * * * * *	*****	* * * * * * * * * * * * *	* * * * * * * * * * * *
Streams Report f		Austin						
03/12/2009 12:52						_		
Name	Use	Det #	CDT Tabl e	TEV Tabl e	Total Run	Avg Run	(mm-dd-yyyy	Start Time hh:mm:ss)
1-C9 Cal Gas 2-C6 Chamber Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Stream 8	Cal Cal Unused Unused Unused Unused Unused	1, 2 1, 2 1 1 1 1 1 1	CDT_1 CDT_1	TEV_1 TEV_1	1		01-01-1970 01-01-1970	
							se Condition	
Name	Interval (hour)		Auto alib	Auto Baseline		se Pressui (PSI		mparature (Deg. F)
1-C9 Cal Gas 2-C6 Chamber	1 1		al se al se	Fal se Fal se		14. 14.		60 60
Name	Pr	Optiona essure	al Base 1 (PSI)		Opti o	Pressure nal Base 2 (PSI)	0pti	onal Base re 3 (PSI)
1-C9 Cal Gas 2-C6 Chamber			0. 00 0. 00			0. 00 0. 00		0.00 0.00
****	* * * * * * * * * * *	*****	* * * * * * * *	* * * * * * * * *	* * * * * *	*****	* * * * * * * * * * * * *	* * * * * * * * * *
Analog Input Rep 03/12/2009 12:52		lodel A	ustin					
Label		Zero So	cal e	Full	Scal e	Swi tch	mA/Volts	Fi xed Val ue
Analog Input 1 Analog Input 2			0 0		1 1	Vari abl e Vari abl e		
*****	* * * * * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * *	* * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * *

			SAMPLE cont.
Analog Output Rep	ort from Model Austi	n	
03/12/2009 12:52:	07 PM		
Label	/ari abl e		
Analog Output 1			
Analog Output 2			
Analog Output 3			
Analog Output 4			
Analog Output 5			
Analog Output 6			
Analog Output 7			
Analog Output 8			
Analog Output 9			
Analog Output 10			
Label	Switch Fixed Va	lue Zero Scale	Full Scale
Analog Output 1	Vari abl e	0	0
Analog Output 2	Vari abl e	0	0
Analog Output 3	Vari abl e	0	0
Analog Output 4	Vari abl e	0	0
Analog Output 5	Vari abl e	0	0
Analog Output 6	Variable	0	0
Analog Output 7	Vari abl e	0	100
Analog Output 8	Variable	0	100
Analog Output 9	Vari abl e	0	100
Analog Output 10	Vari abl e	0	100
*****	*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	port from Model Aust		******
Discrete Input Re 03/12/2009 12:52:	port from Model Aust		******
Discrete Input Re 03/12/2009 12:52:4 Label	port from Model Aust 07 PM	in	*******
Discrete Input Re 03/12/2009 12:52:4 Label Discrete Input 1	port from Model Aust 07 PM Switch	in Invert Polarity	*******
Discrete Input Re 03/12/2009 12:52:4 Label Discrete Input 1 Discrete Input 2	port from Model Aust 07 PM Switch Auto	in Invert Polarity False	******
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1	port from Model Aust 07 PM Switch Auto Auto	in Invert Polarity False False	******
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3	port from Model Aust 07 PM Switch Auto Auto Auto Auto	in Invert Polarity False False False False False False False	*****
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False	******
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 2	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False	*****
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 2 Discrete Input 2 Discrete Input 3	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False False	******
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 3 Discrete Input 4	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False False False False	*****
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 3 Discrete Input 4 Discrete Input 5	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False False False False False	*****
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 3 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 5 Discrete Input 5	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False False False False False False	*****
Discrete Input Re 03/12/2009 12:52: Label Discrete Input 1 Discrete Input 2 Discrete Input 3 Discrete Input 4 Discrete Input 5 Discrete Input 1 Discrete Input 2 Discrete Input 2 Discrete Input 3 Discrete Input 3 Discrete Input 4 Discrete Input 5	port from Model Aust 07 PM Switch Auto Auto Auto Auto Auto Auto Auto Auto	in Invert Polarity False False False False False False False False False False False False False	*****

User Manual 3-9000-745

				SAM	PLE cont
Discrete Input	14	Auto	Fal se		
Discrete Input		Auto	Fal se		
*****	* * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * *		
Discrete Output 03/12/2009 12:53		m Model Austin			
Label	Switch	Invert	Start Time	Duration	Interval
	0		(mm-dd-yyyy hh: mm: ss)	(hh: mm: ss)	(hour)
Discrete Output	1 Auto	Fal se	01-01-1970 01: 23: 20	02: 02: 59	1
Discrete Output	2 Auto	Fal se	01-01-1970 00:00:00	00: 00: 00	1
Discrete Output	3 Auto	Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00:00:00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output	7 Auto	Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output	8 Auto	Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00:00:00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00:00:00	00: 00: 00	1
Discrete Output	13 Auto	Fal se	01-01-1970 00: 00: 00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00:00:00	00: 00: 00	1
Discrete Output		Fal se	01-01-1970 00:00:00	00: 00: 00	1
********************** Valve Report fro 03/12/2009 12:5:	om Model	****************************	*****	******	* * * * * * * * *
Label	Swi tcl	h Us	age Invert Polarity		
S/BF_1	Auto	o anal yz	r01 False		
Dual Col umn	Auto				
S/BF_2	Auto	-			
SS0_1	Auto				
SS0_2	Auto	-			
Stream 1	Auto	-			
Stream 2	Auto		m 2 False		
Stream 3	Auto				
Stream 4	Auto				
unused 1	0f		sed False		
unused 2	0f		sed False		
unused 3	0f		sed Fal se		

			SAMPLE cont.
Serial Port Report 03/12/2009 12:52:09			
Label	Physical Name	ModBus Unit System ID	MAP File
First	PORT C	32 U.S. Customary	UsrMap.txt
Label	Port Type Port Addr	ess	Port Available
First	SI ave		Avai I abl e
Label	Baud Data Rate Bits	Stop Parity HW Flow (Bit	Ctrl Timeout (sec)
First	38400 8	1 None Di sa	able 0
Label	RTS ON Delay RT (msec)	S OFF Delay Port Resp Del (msec) (mse	
First	0	0	0
File Name : UsrMap Date : 8/4/200 Version : 1.0 Author : daniel Type : User_Mo Comment : Comment			
Name	Zero Scale	Full Scale	
Range SCALED_FP1 SCALED_FP2 SCALED_FP3 SCALED_FP4 SCALED_FP5 SCALED_FP6 SCALED_FP7 SCALED_FP8 SCALED_FP9 SCALED_FP10	0. 000000 0. 000000	65535.000000 100.000000 1.000000 2.000000 5.000000 10.000000 20.000000 30.000000 40.000000 50.000000 60.000000	

User Manual 3-9000-745

		SAMPLE cont.
		SAMILE CONT.
SCALED_F	P11 0. 000000 70. 000000	
SCALED_F	P12 0. 000000 80. 00000	
SCALED_F	P13 0. 000000 90. 000000	
SCALED_F	P14 0. 000000 120. 000000	
SCALED_F	P15 0. 000000 200. 000000	
SCALED_F	P16 0. 000000 300. 00000	
SCALED_F	P17 0. 000000 400. 00000	
SCALED_F	P18 0. 000000 600. 000000	
SCALED_F	P19 0. 000000 700. 000000	
SCALED_F	P20 0. 000000 800. 00000	
SCALED_F	P21 0. 000000 900. 000000	
SCALED_F	P22 0. 000000 1000. 000000	
SCALED_F	P23 0. 000000 2000. 000000	
SCALED_F	P24 0. 000000 3000. 000000	
SCALED_F	P25 0. 000000 4000. 000000	
SCALED_F	P26 0. 000000 5000. 000000	
SCALED_F	P27 0. 000000 6000. 000000	
SCALED_F	P28 0. 000000 7000. 000000	
SCALED_F	P29 0. 000000 8000. 000000	
SCALED_F	P30 0. 000000 9000. 000000	
SCALED_F	P31 0. 000000 10000. 000000	
SCALED_F	P32 0. 000000 20000. 000000	
Regi ster	Vari abl e	
3001	1-C9 Cal Gas Component.Mole %.PROPANE	
3003	1-C9 Cal Gas Component.Mole %.i-BUTANE	
3005	1-C9 Cal Gas Component.Mole %.n-BUTANE	
3007	1-C9 Cal Gas Component.Mole %.NEOPENTANE	
3009	1-C9 Cal Gas Component.Mole %.i-PENTANE	
3011	1-C9 Cal Gas Component.Mole %.n-PENTANE	
3013	1-C9 Cal Gas Component.Mole %.NITROGEN	
3015	1-C9 Cal Gas Component. Mole %. METHANE	
3017	1-C9 Cal Gas Component.Mole %.CARBON DIOXIDE	
3019	1-C9 Cal Gas Component.Mole %.ETHANE	
3021	1-C9 Cal Gas Component. Mole %. n-NONANE	
3023	1-C9 Cal Gas Component. Mole %. n-HEXANE	
3025	1-C9 Cal Gas Component. Mole %. n-HEPTANE	
3027	1-C9 Cal Gas Component. Mole %. n-OCTANE	
3029	1-C9 Cal Gas Component.Mole %.H2S	
3031	Heaters. Temperature. Heater 1	
3033	Heaters.Temperature.Heater 2	
3035	Heaters. Temperature. Heater 3	
3037	El ectroni c Pressure Control.Current Pressure.EPC1	
3039	El ectroni c Pressure Control.Current Pressure.EPC2	
3041	Heaters. Setpoint. Heater 4	
3043	1-C9 Cal Gas Component. Ret Time. PROPANE	
3045	1-C9 Cal Gas Component.Ret Time.i-BUTANE	
3047	1-C9 Cal Gas Component. Ret Time. n-BUTANE	
3049	1-C9 Cal Gas Component. Ret Time. NEOPENTANE	
3051	1-C9 Cal Gas Component. Ret Time.i-PENTANE	
3053	1-C9 Cal Gas Component.Ret Time.n-PENTANE	

			SAMPLE cont
3055		s Component.Ret Time.NITROGEN	
		-	
3057		IS Component. Ret Time. METHANE	
3059		IS Component. Ret Time. CARBON DIOXIDE	
3061		IS Component. Ret Time. ETHANE	
3063		is Component.Ret Time.n-NONANE	
3065 3067		IS Component. Ret Time. n-HEXANE	
		IS Component. Ret Time. n-HEPTANE	
3069 3071		is Component.Ret Time.n-OCTANE	
3073		is Component.Ret Time.H2S is.Base Press	
3075		is. Tot Gross BTU	
3075		is. Gross Dry BTU	
3079		er. Gross Sat BTU	
3081		is. Act Gross BTU	
3083		is. Net Dry BTU	
3085		is. Tot Net BTU	
3087		is. Net Sat BTU	
3089		is. Act Net BTU	
3091		er. Tot Lig Vol	
3093		er. Gal /1000 SCF C2+	
3095		is. Gal /1000 SCF C3+	
3097		is. Gal /1000 SCF C4+	
3099		is. Gal /1000 SCF C5+	
3101		is. Gal / 1000 SCF C6+	
3103		is. Tot Sup MJ/m3	
3105		is. Sup Dry MJ/m3	
3107		is. Tot Inf MJ/m3	
3109		us.Inf Dry Corr MJ/kg	
3111		is. Sup Dry Corr MJ/kg	
3113		is.Inf Dry MJ/kg	
3115		is.Cycle Time	
3117		is. Analysis Time	
3119		is.Wobbe Index	
3121	1-C9 Cal Ga	is.Real Rel Den Gas	
3123	1-C9 Cal Ga	s.Unnormalized Mole %	
3125	1-C9 Cal Ga	is.Z factor	
Register	Data Type	Access Zero Scale Full Scale	
3001	FLOAT	RD_ONLY	
3003	FLOAT	RD_ONLY	
3005	FLOAT	RD_ONLY	
3007	FLOAT	RD_ONLY	
3009	FLOAT	RD_ONLY	
3011	FLOAT	RD_ONLY	
3013	FLOAT	RD_ONLY	
3015	FLOAT	RD_ONLY	
3017	FLOAT	RD_ONLY	
3019	FLOAT	RD_ONLY	
3021	FLOAT	RD_ONLY	
3023	FLOAT	RD_ONLY	

			SAMPLE cont.
3025	FLOAT	RD_ONLY	
3027	FLOAT	RD_ONLY	
3029	FLOAT	RD_ONLY	
3031	FLOAT	RD_ONLY	
3033	FLOAT	RD_ONLY	
3035	FLOAT	RD_ONLY	
3037	FLOAT	RD_ONLY	
3039	FLOAT	RD_ONLY	
3041	FLOAT	RD_WR	
3043	FLOAT	RD_ONLY	
3045	FLOAT	RD_ONLY	
3047	FLOAT	RD_ONLY	
3049	FLOAT	RD_ONLY	
3051	FLOAT	RD_ONLY	
3053	FLOAT	RD_ONLY	
3055	FLOAT	RD_ONLY	
3057	FLOAT	RD_ONLY	
3059	FLOAT	RD_ONLY	
3061	FLOAT	RD_ONLY	
3063	FLOAT	RD_ONLY	
3065		—	
	FLOAT	RD_ONLY	
3067	FLOAT	RD_ONLY	
3069	FLOAT	RD_ONLY	
3071	FLOAT	RD_ONLY	
3073	FLOAT	RD_ONLY	
3075	FLOAT	RD_ONLY	
3077	FLOAT	RD_ONLY	
3079	FLOAT	RD_ONLY	
3081	FLOAT	RD_ONLY	
3083	FLOAT	RD_ONLY	
3085	FLOAT	RD_ONLY	
3087	FLOAT	RD_ONLY	
3089	FLOAT	RD_ONLY	
3091	FLOAT	RD_ONLY	
3093	FLOAT	RD_ONLY	
3095	FLOAT	RD_ONLY	
3097	FLOAT	RD_ONLY	
3099	FLOAT	RD_ONLY	
3101	FLOAT	RD_ONLY	
3101	FLOAT	RD_ONLY	
3105	FLOAT	RD_ONLY	
3107	FLOAT	RD_ONLY	
3109	FLOAT	RD_ONLY	
3111	FLOAT	RD_ONLY	
3113	FLOAT	RD_ONLY	
3115	FLOAT	RD_ONLY	
3117	FLOAT	RD_ONLY	
3119	FLOAT	RD_ONLY	
3121	FLOAT	RD_ONLY	
3123	FLOAT	RD_ONLY	
3125	FLOAT	RD_ONLY	

Report from Model Austin 03/12/2009 12: 52: 10 PMReport NameReport TypeAnalysisAnalysisCalibrationCalibrationFinal CalibrationFinal CalibrationRaw DataRaw DataEvery RunEveryrun AverageHourlyHourly Average24 HourDaily AverageWeeklyWeekly Average	
03/12/2009 12: 52: 10 PMReport NameReport TypeAnal ysisAnal ysisCalibrationCalibrationFinal CalibrationFinal CalibrationRaw DataRaw DataEvery RunEveryrun AverageHourl yHourl y Average24 HourDail y Average	
AnalysisAnalysisCalibrationCalibrationFinal CalibrationFinal CalibrationRaw DataRaw DataEvery RunEveryrun AverageHourlyHourly Average24 HourDaily Average	
CalibrationCalibrationFinal CalibrationFinal CalibrationRaw DataRaw DataEvery RunEveryrun AverageHourlyHourly Average24 HourDaily Average	
Final CalibrationFinal CalibrationRaw DataRaw DataEvery RunEveryrun AverageHourlyHourly Average24 HourDaily Average	
Raw DataRaw DataEvery RunEveryrun AverageHourl yHourl y Average24 HourDail y Average	
Every RunEveryrun AverageHourl yHourl y Average24 HourDail y Average	
Hourly Hourly Average 24 Hour Daily Average	
24 Hour Daily Average	
weekiy weekiy average	
Manadalah Manadalah Assassan	
Monthly Monthly Average	
Vari abl e Vari abl e Average	
Report Name Report Template	
Anal ysis /home/Dani el /ReportTempl ates/Defaul t_Anal ysi sReport. xml	
Calibration /home/Daniel/ReportTemplates/CalibrationReport.xml	
Final Calibration /home/Daniel/ReportTemplates/FinalCalibrationReport.xml	
Raw Data /home/Daniel/ReportTemplates/RawDataAvgReport.xml	
Every Run /home/Dani el /ReportTempl ates/EveryrunAvgReport.xml	
Hourly /home/Daniel/ReportTemplates/HourlyAvgReport.xml	
24 Hour /home/Dani el /ReportTempl ates/Dai l yAvgReport.xml	
Weekly /home/Daniel/ReportTemplates/WeeklyAvgReport.xml	
Monthl y/home/Dani el /ReportTempl ates/Monthl yAvgReport. xmlVari abl e/home/Dani el /ReportTempl ates/Vari abl eAvgReport. xml	
***************************************	* * * *

5.13 Deleting archived data from the gas chromatograph

To delete archived data and reset the GC memory, do the following:

1. Select **Reset Archive Data...** from the **Logs/Reports** menu. The *Reset Archive Data* window displays.

Figure 5-49. The Ro	eset Archive Data	window	
	Reset Archive Data	×	
	Select Alarm Log Event Log System Log	Weekly Averages Monthly Averages Variable Averages Every Run Archive	
		Analysis Archive	
	Select All	Deselect All	
		Reset Close	

2. Select the types of data that you want to delete.

Note

To select all the options, click Select All. To clear all options, click Deselect All.

3. Click **Reset**. MON 20/20 displays a confirmation dialog.

4. Click **Yes**. MON 20/20 clears the GC's memory. New archived records will begin accumulating again as analysis and calibration runs occur.

5.14 The molecular weight vs. response factor graph

The *Molecular Weight Vs. Response Factor* window, which can be useful in checking valve function, displays a graph that consists of the following information:

- Log (Molecular Weight) vs. Log (Response Factor) scatter plot graph showing the actual measured values for the following "normal" alkanes:
 - Methane (C1)
 - Ethane (C2)
 - Propane (C3)
 - Butane (C4)
 - Pentane (C5)
- A trend line (best fit straight line);

Note

The ideal trend line would be linear.

• R-squared correlation coefficient.

Note

The closer RSq is to 1, the better.

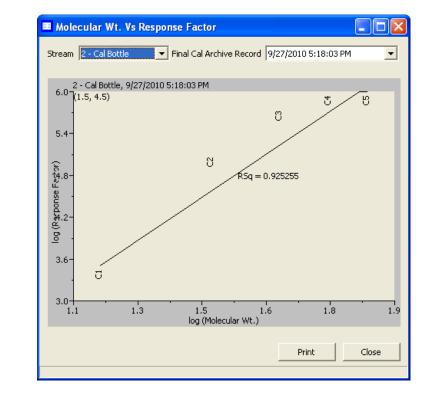


Figure 5-50. Molecular Weight vs. Response Factor window

This graph is only available for calibration streams, which can be selected from the *Stream* drop-down list. By default, the newest final calibration data is used to generate the graph, but any archived final calibration file can be used by selecting it from the *Final Calibration Record* drop-down list.

To print the graph, click **Print**.

This page is intentionally left blank.

Section 6: Controlling Analyses

Control	Tools	View	Help
Auto :	Sequen	te F	2
Single	Stream	l	
	ation tion		
Halt	•	F	3
Stop I	Now		

The options in the Control pull-down menu allow you to manage analysis runs as well as calibration, validation and baseline runs. Control menu commands also allow you to stop an analysis run immediately or at the end of the run.

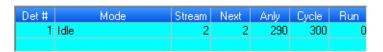
6.1 Halting an analysis

Before a new analysis run can be initiated, the current analysis must be stopped. To stop the current analysis at the end of its cycle, do the following:

- 1. There are three ways to halt an analysis run:
 - Select Halt... from the Control menu.
 - Press F3.
 - Click $\frac{1}{123}$ on the Toolbar.

If you running in a mode that uses two detectors, MON 20/20 displays a selector window.

Figure 6-1. The selector window


2. Choose the appropriate detector. A confirmation message displays.

3. Click **Yes** and the analysis will stop at the end of the current cycle. Use the *Mode* column on the **GC Status Bar** to monitor the status of the operation. When the analysis has halted, the Mode value will be "Idle".

Figure 6-3. The GC Status Bar

6.2 Auto sequencing

Use this function to start continuous GC analysis runs that follow a predefined stream sequence. See "Creating a stream sequence for a detector" on page 4-78 for detailed instructions on configuring the predefined sequence.

If an analysis run is in progress, it must be stopped before auto sequencing can be started. See "Stopping an Analysis Run" on page 6-9 for more information.

Note

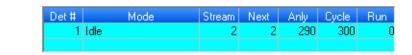
To initiate auto-sequencing, do the following:

- 1. There are three ways of initiating auto sequencing:
 - Select Auto Sequence... from the Control menu.
 - Press F2.
 - Click $\overrightarrow{123}$ on the Toolbar.

A confirmation message displays.

Figure 6-	4. Con	firmation	message
-----------	--------	-----------	---------

Start Auto-Sequence	X
✓ Purge stream for 60 seconds	
	OK Cancel


2. Check the *Purge stream for 60 seconds* check box to set the purging option. The checkbox is selected by default.

Note

Purging allows sample gas to flow through the sample loop for 60 seconds prior to beginning the first analysis.

3. Click **Yes** and auto sequencing starts. Use the *Mode* column on the **GC Status Bar** to monitor the status of the analysis run.

Figure 6-5. The GC Status Bar

Note

To view the results of the Auto Sequence run, select **Report Display** from the **Logs/Reports** menu.

6.3 Analyzing a single stream

Note

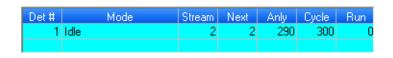
If an analysis run is in progress, it must be stopped before auto sequencing can be started. See "Stopping an Analysis Run" on page 6-9 for more information.

To start an analysis run on a single calibration or sample stream, do the following:

1. Select **Single Stream...** from the **Control** menu. A confirmation message displays.

Figure 6-6. Confirmation message

Start Single Stream Analysis	×
Stream: 1 - Stream 1 2 - Stream 2	
 ✓ Purge stream for 60 seconds ✓ Continuous operation 	-
OK	Cancel


- 2. Select a stream from the **Stream** menu.
- 3. Check the *Purge stream for 60 seconds* check box to set the purging option. The checkbox is selected by default.

Note

Purging allows sample gas to flow through the sample loop for 60 seconds prior to beginning the first analysis.

- 4. Check the *Continuous operation* check box to set or unset repetitive analysis. The checkbox is selected by default.
- 5. Click **OK** and the analysis starts. Use the *Mode* column on the **GC Status Bar** to monitor the status of the analysis run.

Figure 6-7. The GC Status Bar

Note

To view the results of the Auto Sequence run, select Report Display from the Logs/ Reports menu.

6.4 Calibrating the gas chromatograph

Calibration runs are determined by the CDT and Streams settings. See "Managing Component Data Tables" on page 4-5 and "Creating a stream sequence for a detector" on page 4-78 for detailed instructions on how to edit these settings.

To calibrate a GC, do the following:

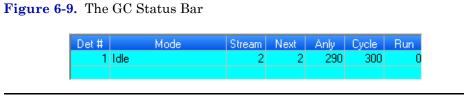
1. Select **Calibration...** from the **Control** menu. The *Start Calibration* window displays.

Figure 6-8. The Start Calibration window

Start Calibration
Stream: 1 - Stream 1
Purge stream for 60 seconds Calibration type Normal Forced
OK Cancel

Note

If the GC is in *Auto Sequence* mode, calibration will not start until two or more analysis runs have been completed. This delay is required to complete the current analysis and the analysis of the stream currently purging through the valve.


- 2. Select a stream from the **Stream** menu.
- 3. Check the *Purge stream for 60 seconds* check box to set the purging option. The checkbox is selected by default.

Note

Purging allows sample gas to flow through the sample loop for 60 seconds prior to beginning the first analysis.

- 4. Select the desired calibration type.
 - (a.) Select Normal to perform a manual calibration in which the CDT for the selected stream(s) will be updated with calibration data *unless* the data is outside the acceptable deviations, as listed on the CDT. For more information, see "Managing Component Data Tables" on page 4-5.

- (b.) Select **Forced** to perform a manual calibration in which the CDT for the selected stream(s) will be updated with calibration data *even if* that data is outside the acceptable deviations, as listed on the CDT. For more information, see "Managing Component Data Tables" on page 4-5.
- 5. Click **OK** and the calibration starts. Use the *Mode* column on the **GC Status Bar** to monitor the status of the operation.

Note

To view the results of the Auto Sequence run, select Report Display from the Logs/ Reports menu.

6.5 Validating the Gas Chromatograph

During a validation run, the GC performs a test analysis to verify that it is working properly. The test analysis is performed on a gas whose component concentrations are already known; if the GC's results deviate significantly from the predetermined data, an alarm is generated. Validation runs are determined by the validation data table and streams settings. See "Managing Validation Data Tables" on page 4-35 and "Creating a stream sequence for a detector" on page 4-78 for detailed instructions on how to edit these settings.

To validate the GC, do the following:

1. Select Validation... from the Control menu. The *Start Validation* window displays.

Start Validation		
Stream:		
3 - 1 validate		
☑ Purge stream for 60 seconds		
OK	Cancel	

Note

If the GC is in *Auto Sequence* mode, validation will not start until two or more analysis runs have been completed. This delay is required to complete the current analysis and the analysis of the stream currently purging through the valve.

2. Check the *Purge stream for 60 seconds* check box to set the purging option. The checkbox is selected by default.

Note

Purging allows sample gas to flow through the sample loop for 60 seconds prior to beginning the first analysis.

3. Click **OK** and the validation starts. Use the *Mode* column on the **GC Status Bar** to monitor the status of the operation.

Figure 6-11. The GC Status Bar

Det#	Mode	Stream	Next	Anly	Cycle	Run
1	Idle	2	2	290	300	0

6.6 Stopping an Analysis Run

Note

This function forces the system into Idle mode. If Stop Now is performed while an analysis is in progress, the components may continue to elute from the columns during. No analysis data will be generated.

Do not perform a Stop Now unless absolutely necessary. Whenever possible, use the Halt function.

To *immediately* stop an analysis run, do the following:

1. Select **Stop Now...** from the **Control** menu. A confirmation message displays.

Figure 6-12. Confirmation message

MON 20	/20
1	Stop Now can affect the next analysis. Do you really want to stop?
	Yes No

2. Click **Yes** and the current analysis stops.

This page is intentionally left blank.

Section 7: Using MON 20/20 Tools

<u>T</u> ools	⊻iew <u>H</u> elp		
<u>U</u> se	Users •		
Upgrade Firm <u>w</u> are Cold Boot			
<u>M</u> odbus Test <u>D</u> iagnostics			
LOI <u>K</u> ey Sensitivity ROC Cards			

The options in the Tools pull-down menu allow you to do the following:

•Use the Modbus Test program to confirm that data is being accurately relayed from the gas chromatograph to the PC.

•Manage users.

•Adjust the sensitivity of the LOI keys.

•Install upgrades to the GC.

7.1 Using the Modbus Test program

Use the Modbus program to poll the GC's Modbus registers (or registers from another device) to confirm that data is accurately relayed from the gas chromatograph to the PC. Then, as necessary, assign data types to the returned data. See "Assigning scale ranges to User_Modbus registers" on page 7-15 for more information. You can save all settings to a file for future reference.

You can use this program to facilitate software debugging or for special installations. With this program, you can troubleshoot any device that employs registers including the GC, an ultrasonic meter, or a flow computer.

CAUTION

NOT REQIURED FOR NORMAL GC OPERATION

The Modbus Test is reserved for advanced functions. The Modbus Test function is not required for normal GC operation. Skip this section unless you are developing software, engaging in a software debugging process, or designing a custom installation that directly accesses the GC Controller Modbus registers.

Traditionally, Modbus registers are polled by using a data collection system (DCS). To facilitate installation and debugging, the Modbus program emulates a DCS.

User Manual	
3-9000-745	

This section provides detailed instructions for using the Modbus program. Use this program only if you are familiar with Modbus communication protocol and the operation of MON 20/20.

7.1.1 Comparing Modbus protocols

MON 20/20 and the Modbus program can accommodate two different Modbus protocols: **SIM_2251** and **User_Modbus**. Separate Modbus registers are reserved for each protocol; therefore, some settings for MON 20/20 and WinMB depend on which Modbus protocol is used.

The protocol you need depends, ultimately, on the hardware used for data acquisition from the GC Modbus register contents.

The following comparison should help clarify the differences between the two protocols as well as the utility of each.

SIM_2251	User_Modbus
Serial slave port	Serial slave port
Modified protocol that allows floating point numbers to be transmitted over Modbus via 2251 emulation slave type	Standard Gould protocol that accommodates PLC Emulation LO-HI (PLC-LH)
Most register contents are predefined; some registers can be user-defined	Predefined Boolean (coils) User-defined Numeric (registers)
Data types are predefined for registers 1000 to 9000	Data types are user-defined
Variables assigned to registers can be listed in the GC Config Report. For instructions and an example report, see Section 5.12. See Appendix C for more detail about individual registers.	Variables assigned to registers can be listed in the GC Config Report. For instructions and an example report, see Section 5.12. See Appendix C for more detail about individual registers.
When using the Modbus program, set <i>Register</i> <i>Mode</i> to "DANIEL" to view register contents.	When using the Modbus program, set <i>Register</i> <i>Mode</i> to "PLC- LH" or "PLC-HL" to view register contents.
It is not necessary to assign scales to registers.	It may be necessary to assign scales to registers, to convert floating point values to whole integer representations.

Table 7-1. Comparing SIM_2251 and User_Modbus Protocols

7.1.2 Setting communication parameters

To determine or reset the communications parameters used by the Modbus program, do the following:

1. Select **Modbus Test...** from the **Tools** menu. The *Modbus Test Program* window displays. The current port settings display in the window's title bar.

	Figure 7-1.	The Modbus Test	Program window	with current	port setting in title bar
--	-------------	-----------------	----------------	--------------	---------------------------

Modbus Test: Modbus/TCP	
Modbus Function Data Addr Quantity Repeat Record No	Port Setup
→ 1 3 (Read Multiple Regs → 0 1 1 1 1 I I I I I I I I I I I I I I I	Log Data
Data Type ⓒ ∐se Integer (16)	Save Data
C Use template to decode registers	Print Data
C Use template to decode logs About Modbus	Help
Data Repeat Count: 0 Hard / Soft Errors: 0 / 0	Close
Register Value 0	
Packet Input-Output	

Note

If MON 20/20 displays an error message, verify the installation directory via the Program Settings window (see Section 1.2.5).

2. Click **Port Setup**. The *Port Setup* window appears.

Figure 7-2.	The Port Setup	window
-------------	----------------	--------

ocal Connectio Port: Baud Rate: Data Bits: Parity:	n COM1 38400 8	•	Protocol C ASCII C ASCII Register Mode
Baud Rate: Data Bits:	38400	•	© RTU
Data Bits:			
	8	•	- Register Mode
Paritur			-
	NONE	-	C PLC-HL
Stop Bits:	1	-	PLC-LH
otop bits.			C Daniel
low Control			Control Options
O None			
RTS/0	стя		Read Timeout: 1000 ms
O RTS 1	ſoggle		Try: 2
			OK Cancel
	⊙ None ⊙ RTS/		C None

3. Make the appropriate configuration changes. The following table lists the typical setting for each parameter:

Parameter	Typical Setting
Port	COM1 or COM2
Baud Rate	9600
Data Bits	7 or 8
Parity	Even or None
Stop Bits	1
Flow Control	None
Read Timeout	500 ms
Try	2
Register Mode	Daniel (SIM_2251) PLC-LH (User_Modbus)

Parameter	Typical Setting
Protocol	ASCII Modbus RTU Modbus

Note

For a direct connection to the GC, ensure that the port setting is the same as the Com ID number of the serial port used.

4. Click OK.

7.1.3 Getting Modbus Data

To read or write register contents to the GC, or any other device, do the following:

Note

Before retrieving data, print a GC Config Report (see Section 5.12) and review the Communication section to learn the variable names that are assigned to the Modbus registers.

Note

Modbus registers assigned to alarms are application-specific.

1. In the *Slave Addr* field, type the COM ID of the GC. The Modbus program will accept a slave address value of **1** to **247**.

To use Broadcast Mode, which directs the Modbus program to poll all known devices, enter **0** in the *Slave Addr* field. Each device interprets this poll attempt as an instruction to read and take action; however, a response message may not be received by the Modbus program.

Note

Changes are applied to the corresponding register value at each device.

2. Select the desired read or write option from the *Function* pull down menu.

Function Code	Description	Broadcast
1 (Read Coil)	Reads one or more coil values.	
2 (Read Input Status)	Reads one or more input status values.	
3 (Read Multiple Regs)	Reads one or more register values.	
4 (Read Input Regs)	Reads one or more input register values.	
5 (Set Single Coil)	set (write) one coil value	✓
6 (Set Single Reg)	set (write) one register value	✓
15 (Set Multiple Coils)	set (write) multiple coil values	✓
16 (Set Multiple Regs)	set (write) multiple register values	\checkmark

3. Type the starting register value in the *Data Addr* field.

Note

The data type is set automatically by the Modbus program, based on the specified data address.

4. In the *Quantity* field, type the number of registers to be retrieved. The Modbus program will accept a quantity value of **1** to **2016**. The requested number of registers cannot exceed the amount contained by the selected message block but you *can* retrieve a partial block. You cannot cross a message block boundary.

Also, in Standard Modbus mode each register is 16 bits. Therefore, integers (SHORT) consist of 1 register while floats (FLOAT) and long integers (LONG) consist of 2 registers.

Note

```
Boolean registers are not user-defined (for either SIM_2251 or User_Modbus) and primarily contain alarm flags useful for debugging. To view the contents of Boolean registers, select the 1 (Read Coil) function code.
```

Numeric registers for User_Modbus can be user-defined. To view the contents of Numeric registers, select the **3 (Read Regs)** function code.

5. Type the desired repeat count, which is the number of times the Modbus program should read or set the specified registers before ceasing transmission, in the *Repeat* field. The Modbus program will accept a repeat value of 1 to **9999**. A value of **-1** produces an infinite polling loop that can be terminated by clicking **Stop**.

7.1.4 Transmitting using a single data type

To assign a data type to a group of registers you will read or edit, do the following:

Note

Before retrieving data, print a GC Config Report (see Section 5.12) and review the Communication section to learn the variable names that are assigned to the Modbus registers.

1. In the *Slave Addr* field, type the COM ID of the GC. The Modbus program will accept a slave address value of **1** to **247**.

To use Broadcast Mode, which directs the Modbus program to poll all known devices, enter $\mathbf{0}$ in the *Slave Addr* field. Each device interprets this poll attempt as an instruction to read and take action; however, a response message may not be received by the Modbus program.

Note

Changes are applied to the corresponding register value at each device.

2. Select the desired read or write option from the *Function* pull down menu.

Function Code	Description	Broadcast
1 (Read Coil)	Reads one or more coil values.	
2 (Read Input Status)	Reads one or more input status values.	
3 (Read Multiple Regs)	Reads one or more register values.	
4 (Read Input Regs)	Reads one or more input register values.	
5 (Set Single Coil)	set (write) one coil value	✓
6 (Set Single Reg)	set (write) one register value	✓
15 (Set Multiple Coils)	set (write) multiple coil values	✓
16 (Set Multiple Regs)	set (write) multiple register values	\checkmark

3. Type the starting register value in the *Data Addr* field.

Note

The data type is set automatically by the Modbus program, based on the specified data address.

4. In the *Quantity* field, type the number of registers to be retrieved. The Modbus program will accept a quantity value of **1** to **2016**. The requested number of registers cannot exceed the amount contained by the selected message block but you *can* retrieve a partial block. You cannot cross a message block boundary.

Also, in Standard Modbus mode each register is 16 bits. Therefore, integers (SHORT) consist of 1 register while floats (FLOAT) and long integers (LONG) consist of 2 registers.

Note

```
Boolean registers are not user-defined (for either SIM_2251 or User_Modbus) and primarily contain alarm flags useful for debugging. To view the contents of Boolean registers, select the 1 (Read Coil) function code.
```

Numeric registers for User_Modbus can be user-defined. To view the contents of Numeric registers, select the **3 (Read Regs)** function code.

- 5. Type the desired repeat count, which is the number of times the Modbus program should read or set the specified registers before ceasing transmission, in the *Repeat* field. The Modbus program will accept a repeat value of 1 to **9999**. A value of -1 produces an infinite polling loop that can be terminated by clicking **Stop**.
- 6. Select the Use <data type> to decode registers check box.
- 7. Select a data type from the pull-down menu. The following table lists the default data types for each block of SIM_2251 registers.

Register Range	Default Type
1000 - 2999	Boolean
3000 - 4999	Integer
5000 - 6900	Long
7000 - 8999	Float

Note

To ensure the best data type assignments, review a GC Config Report.

- 8. Click **Transmit** to retrieve the selected registers (i.e., the specified data addresses) from the GC. The transmitted/received packet data displays in the *Packet Input-Output* window.
- 9. Click **Stop** to end the transmission of the data and to return to the **Modbus Function Selection** options.

7.1.5 Transmitting using a template

Templates are best used when decoding mixed data types because the template contains data that the Modbus program can use to determine which data type should be assigned to which register.

To create a new template or to use an existing template, do the following:

Note

Before retrieving data, print a GC Config Report (see Section 5.12) and review the Communication section to learn the variable names that are assigned to the Modbus registers.

1. In the *Slave Addr* field, type the COM ID of the GC. The Modbus program will accept a slave address value of **1** to **247**.

To use Broadcast Mode, which directs the Modbus program to poll all known devices, enter **0** in the *Slave Addr* field. Each device interprets this poll attempt as an instruction to read and take action; however, a response message may not be received by the Modbus program.

Note

Changes are applied to the corresponding register value at each device.

2. Select the desired read or write option from the *Function* pull down menu.

Function Code	n Code Description	
1 (Read Coil)	Reads one or more coil values.	
2 (Read Input Status)	Reads one or more input status values.	
3 (Read Multiple Regs)	Reads one or more register values.	
4 (Read Input Regs)	Reads one or more input register values.	
5 (Set Single Coil)	set (write) one coil value	✓
6 (Set Single Reg)	set (write) one register value	\checkmark
15 (Set Multiple Coils)	set (write) multiple coil values	\checkmark
16 (Set Multiple Regs)	set (write) multiple register values	✓

3. Type the starting register value in the Data Addr field.

Note

The data type is set automatically by the Modbus program, based on the specified data address.

4. In the *Quantity* field, type the number of registers to be retrieved. The Modbus program will accept a quantity value of **1** to **2016**. The requested number of registers cannot exceed the amount contained by the selected message block but you *can* retrieve a partial block. You cannot cross a message block boundary.

Also, in Standard Modbus mode each register is 16 bits. Therefore, integers (SHORT) consist of 1 register while floats (FLOAT) and long integers (LONG) consist of 2 registers.

Note

Boolean registers are not user-defined (for either SIM_2251 or User_Modbus) and primarily contain alarm flags useful for debugging. To view the contents of Boolean registers, select the **1 (Read Coil)** function code.

Numeric registers for User_Modbus can be user-defined. To view the contents of Numeric registers, select the **3 (Read Regs)** function code.

- 5. Type the desired repeat count, which is the number of times the Modbus program should read or set the specified registers before ceasing transmission, in the *Repeat* field. The Modbus program will accept a repeat value of 1 to **9999**. A value of **-1** produces an infinite polling loop that can be terminated by clicking **Stop**.
- 6. Depending on your intent, select *Use template to decode registers* or *Use template to decode logs*. The *Record No* field becomes active.
- 7. Enter the desired record number in the *Record No* field. To verify which record number should be entered, consult the Modbus specifications for your device. For more information on GC Modbus registers, see Appendix C.

The following table describes the relationship between templates and record numbers:

Data Type Setting	Other Setting(s)	Result
Register template	 Enter Data Addr value. Enter Record No. value. Enter Quantity value. 	Read Quantity fields (i.e., the number of fields specified by the Quantity setting) from the specified Record No. of the register (Data Addr).
Log template	• Enter <i>Record No</i> . value.	Read all fields associated with the Record No.
	 Enter Data Addr value. Enter "0" for the Record No. value. 	Read all fields in all records for the specified log register (Data Addr).

8. Click **Edit Template**. The *Template File* window displays with a new template.

Figure 7-3. The Edit Template window

Offset	Data Type	Size 🔺	
0	Float 🗸	4	
4	Float	4	
8	Float	4	
12	Float	4	
16	Float	4	
20	Float	4	
24	Float	4	
28	Float	4	
32	Float	4	
36	Float	4	
40	Float	4	
44	Float	4	
48	Float	4	
52	Float	4	
56	Float	4 🔻	

- 9. To open an existing template file, click **Open**. The *Select Template Configuration File* dialog displays.
- 10. Locate and select the template file, and then click **Open**. Template files are saved with the .cfg extension.

- 11. To edit the template, select a data type for each desired offset.
- 12. To change all offsets to the same data type, change the first offset to the desired data type, and then click **Auto Reset**. The data type for the remainder of the offsets switch to the data type of the first offset.
- 13. To save the displayed file to disk, click **Save As...** The *Select Template Configuration File* dialog appears. Type in a filename and click **Save**.
- 14. Click **OK** to apply your selections and return to the main window.

7.1.6 Setting the log parameters

The Log Data window allows you to log the polled data to a specified file.

Note

The Log Data function is not necessary to transmit Modbus data. To disable this function, clear the *Enable Logging 'Data' Registers and Values* check box on the *Log Data* window.

To set the log parameters for the Modbus program, do the following:

1. Click Log Data. The Log Data window displays.

Figure 7-4. The Log Data window

Log'Data' Parameters Logging Mode: Continuous Time Interval between consecutive logs: Type of logging C Reset C Append	Enable Logging	g 'Data' Registers a	and Values		
Time Interval between consecutive logs:					
Type of logging C Reset © Append	Logging Mode:	Continuous 💌			
C Reset C Append	Time Interval betw	een consecutive la	ogs:	v	
User Specified Filename:			Append		
· · · · · · · · · · · · · · · · · · ·	User Specified File	name:			
No File Specified	No File Specified				

- 2. Select the *Enable Logging 'Data' Registers and Values* check box to enable data logging and to activate the **Log Data Parameters** section.
- 3. Select a **Logging Mode** from the pull-down menu. You have the following options:
 - **Continuous** mode records the polled data continuously until the connection is terminated or data logging is disabled by clearing the *Enable Logging 'Data' Registers and Values* check box.
 - **Sampling** mode records the polled data based on the time interval that you set in the *Time Interval between consecutive logs* text box. Time intervals can be set in seconds, minutes, or hours.
- 4. Select a type of logging. You have the following options:
 - **Append** adds this log to the file specified, preserving previously logged data.
 - **Reset** deletes the previously-logged data and saves only this new log.
- 5. Click **Save As...** The *Save As* window displays. The file can be saved as a tab-delimited text file or a Microsoft Excel file. Type in a filename and click **Save**.

7.1.7 Saving Modbus data

To save the data table to a separate file, do the following:

- 1. Click **Save Data**. The *Save 'Data' Displayed As* dialog appears. The file can be saved as a tab-delimited text file, an HTML file or a Microsoft Excel file.
- 2. Type in a filename and click **Save**.

7.1.8 Printing Modbus data

To print Modbus data, click **Print Data**. The standard print dialog displays.

MON 20/20 prints the report to your previously configured printer. See Section 1.7 for more information.

7.1.9 Assigning scale ranges to User_Modbus registers

By assigning scale ranges, floating point data can be converted to integer values. This is an optional task that applies to applications using the User_Modbus protocol.

Use the **Register** command described in Section 4.12.4, "Viewing or editing scales" on page 92 to assign scale ranges. See Appendix C for more information regarding the gas chromatograph's Modbus registers.

7.2 Troubleshooting communication errors

The Modbus program's Error Log is maintained in a circular buffer that holds up to 512 entries.

The Modbus program tracks the errors for a given session but does not store them. When you exit the Modbus program, all errors are cleared.

To view any communication errors that occurred during the data transfer, do the following:

1. Click **Error**.... The *Error* window appears.

Date & Time	Description	

Figure 7-5. The Error window

Note

 $\label{eq:constraint} \text{Double-click a } \textit{Description cell to ``scroll through"} \ \text{the displayed text.}$

- 2. To view all errors that have occurred in this session, click **Update**.
- 3. To delete all entries to date, click **Clear**.

7.3 Managing users

<u>U</u> sers ▶	User Administration
Upgrade Firm <u>w</u> are Cold Boot	Change User Password Reset Administrator User \ Password
<u>M</u> odbus Test <u>D</u> iagnostics	Logged on Users
LOI <u>K</u> ey Sensitivity	

Use the User Administration commands to create or delete users, change passwords, and to monitor PC-to-GC connections.

Login security is at the gas chromatograph level instead of at the software level. This means that you no longer have to log in after starting MON 20/20—but you do have to log in to the gas chromatograph to which you are trying to connect. This also means that if you create a new user, that user is only valid for the GC to which you are connected. You cannot connect to any other GC unless you create the same user on it first.

MON 20/20 recognizes the following four user types, or roles, each with an increasing level of access to functionality:

- **Read-only** A read-only user has the lowest level of access and can view data but cannot make any changes. A read-only user can change his or her password only.
- **Regular** A regular user has all of the privileges of a read-only user, as well as the ability to acknowledge and clear alarms. A regular user can also control the GC through MON 20/20's Control menus. A regular user can change his or her password only and cannot create or delete other users.
- **Super User** A super user has all of the privileges of a regular user, as well as the ability to manage and control the GC through MON 20/20's Application and Hardware menus. A super user can change his or her password only and cannot create or delete other users.
- Administrator An administrator has complete access to all of MON 20/20's commands and functions, as well as the ability to manage all other users by creating or deleting user accounts, and changing passwords.

Note

Each GC ships with two administrator accounts: **daniel** and **emerson**. By default, these two accounts do not require a password, but a password can be added, if desired.

The following table lists in detail the functions and commands that are available to each user role:

Menu	Commands	Admin User	Super User	Regular User	Read-Only User
File	Connection Directory	Y	Y	Y	Y
	Program Settings	Y	Y	Y	Y
	Print Setup	Y	Y	Y	Y
Chromatograph	Connect	Y	Y	Y	Y
	Disconnect	Y	Y	Y	Y
	Chromatogram Viewer	Y	Y	Y	Y
	Chromatogram - Forced Cal	Y	Y	N	N
	GC Time	Y	Y	read-only	read-only
Hardware	Heaters	Y	Y	read-only	read-only
	Valves	Y	Y	read-only	read-only
	Detectors	Y	Y	read-only	read-only
	Discrete Inputs	Y	Y	read-only	read-only
	Discrete Outputs	Y	Y	read-only	read-only
	Analog Inputs	Y	Y	read-only	read-only
	Analog Outputs	Y	Y	read-only	read-only
	Installed Hardware	read-only	read-only	read-only	read-only
Application	System	Y	Y	read-only	read-only
	Component Data	Y	Y	read-only	read-only
	Timed Events	Y	Y	read-only	read-only
	Calculations - Control	Y	Y	read-only	read-only
	Calculations - Averages	Y	Y	read-only	read-only

MON20/20 Software for Gas Chromatographs SEPTEMBER 2010

Menu	Commands	Admin User	Super User	Regular User	Read-Only User
	Calculations - User Defined	Y	Y	read-only	read-only
	Limit Alarms	Y	Y	read-only	read-only
	System Alarms	Y	Y	read-only	read-only
	Streams	Y	Y	read-only	read-only
	Stream Sequence	Y	Y	read-only	read-only
	Communication	Y	Y	read-only	read-only
Logs/Reports	Unack/Active Alarms	Y	Y	Y	read-only
	Alarm Logs	read-only	read-only	read-only	read-only
	Ack/Clear Alarms	Y	Y	Y	N
	Maintenance Log	Y	Y	Y	read-only
	Event Log	read-only	read-only	read-only	read-only
	Report Display	read-only	read-only	read-only	read-only
	Archive Report	read-only	read-only	read-only	read-only
	Printer Control	Y	Y	Y	read-only
	Trend Data	read-only	read-only	read-only	read-only
	Reset Archive Data	Y	N	N	N
Control	Start Auto Seq	Y	Y	Y	N
	Start Single Stream	Y	Y	Y	N
	Halt	Y	Y	Y	N
	Calibration	Y	Y	Y	N
	Stop	Y	Y	Y	N
Tools	User Administration	Y	N	N	N
	Change User Password	Any	Own	Own	Own

7.3.1 Creating users

Note

You must be logged in as an administrator.

To create a user, do the following:

1. Select **Tools** \rightarrow **Users** \rightarrow **User Administration...**. The *User Administration* window appears, displaying a list of current users and their role levels.

Figure 7-6.	The User Administration window	v
-------------	--------------------------------	---

User Na		ccess Level	-
DANIEL EMERSON	Administrator Administrator		
			4
User/User File Add User Remo	ove User Edit User Export f	File Import File]
		OK Cancel	

2. To add a user, click Add User. The Add User window displays.

Add User		×
User Name:	<u> </u>	
Access Level:	Super 💌	
Old Password:		
New Password:		
Confirm New Password:		
OK	Cancel	

- 3. Enter the appropriate information into the text fields.
- 4. Click **OK**. MON 20/20 creates the new user and adds it to the User table on the *User Administration* window.

7.3.2 Exporting a list of user profiles

To save a list of users, along with their role levels and passwords, do the following:

1. Select **Tools** \rightarrow **Users** \rightarrow **User Administration...** The *User Administration* window appears, displaying a list of current users and their role levels.

User Nam		Access	Level	-
DANIEL		ministrator		
MERSON	Adı	ministrator		
				-
User/User File				
User/User File				
Add User Remo	ve User Edit User	Export File	Import File	

Figure 7-8. The User Administration window

2. Click **Export File**. The *Export User File* window displays.

Export User Fil	e					? 🛛
Savejn:	🗀 Phoenix		•	← 🗈	💣 🎟 •	
My Recent Documents Desktop My Documents My Computer	Ε ΤΡ					
My Network Places	File <u>n</u> ame: Save as <u>t</u> ype:	Phoenix User User File (*.xt	2010 4-42 F	PM.xusr	•	<u>S</u> ave Cancel

Figure 7-9. The Export User File window

- 3. Navigate to where you want to save the file, if necessary.
- 4. Type in a file name or use the pre-generated name provided.
- 5. Click Save.

7.3.3 Importing a list of user profiles

To load a list of users, along with their role levels and passwords, do the following:

1. Select **Tools** \rightarrow **Users** \rightarrow **User Administration...** The *User Administration* window appears, displaying a list of current users and their role levels.

DANIEL Administrator EMERSON Administrator		
	-	
User/User File Add User Remove User Edit User Export File Import File		

Figure 7-10. The User Administration window

2. Click Import File. The Import User File window displays.

Import User Fil	ile	? 🗙
Look <u>i</u> n:	Phoenix 💌 🗢 🖻 📸 📰 -	
My Recent Documents Desktop	FTP Phoenix Users File 10-18-2010 4-43 PM.xusr	
My Documents		
My Computer		
My Network Places	File name: Files of type: User File (*.xusr)	<u>O</u> pen Cancel

Figure 7-11. The Import User File window

3. Navigate to where the file is located, if necessary.

- 4. Click on the file to be loaded.
- 5. Click **Open**. The users will be added to the *User Administration* window.

7.3.4 Editing users

Note You must be logged in as an administrator.

To edit a user's name, role level or password, do the following:

1. Select **Tools** \rightarrow **Users** \rightarrow **User Administration...**. The *User Administration* window appears, displaying a list of current users and their role levels.

Figure 7-12.	The User	Administration	window
--------------	----------	----------------	--------

User Name	Access Level 🖌	
DANIEL	Administrator	
EMERSON	Administrator	
	-	
User/User File Add User Remove	User Edit User Export File Import File	1
	OK Cancel	

2. Select the user whose role you want to edit and click **Edit User**. The *Edit User* window displays.

Edit User	E C
User Name:	EMERSON
Access Level:	Administrator 💌
Old Password:	
New Password:	
Confirm New Password:	
ОК	Cancel

- 3. Change the appropriate information as required.
- 4. Click **OK**. MON 20/20 makes the requested changes and returns to the *User Administration* window.

7.3.5 Removing a user

To remove a user, do the following:

1. Select **Tools** \rightarrow **Users** \rightarrow **User Administration...**. The *User Administration* window appears, displaying a list of current users and their role levels.

	ame		Access	Level	-
DANIEL		Adminis			
EMERSON		Adminis	strator		
ļ					-
User/User File					
Add User Rer	nove User	Edit User	Export File	Import Fil	e

Figure 7-14. The User Administration window

2. Select the user you want to delete and click **Remove User**. A confirmation message displays.

MON 20	/20
?	Are you sure you want to delete user - EMERSON?
	Yes No

3. Click **Yes**. MON 20/20 deletes the user and returns to the *User* Administration window.

7.3.6 Changing a user's password

A user without administrator-level access can only change his or her password.

1. Select Select Tools \rightarrow Users \rightarrow Change User Password.... The *Change User Password* window displays.

Figure	7-15.	The	Change	User	Password	window
riguie	1-10.	THE	Unange	User	Lassword	wmuow

Change User Password		\mathbf{X}
User Name:	daniel	
Access Level:	Administrator	
Old Password:		
New Password:		
Confirm New Password:		
ОК	Cancel	

2. Enter the appropriate information in the text fields and click **OK**.

7.3.7 Resetting the adminstrator password

To reset an administrator password, do the following:

1. Start MON 20/20 and select Users \rightarrow Reset Administrator User / Password. The following warning displays:

2. Click **Yes**. The *Connect to GC* window displays.

GC Name	Short Desc	
Austin	Short description	<u>E</u> thernet
Houston	Short description	Ethernet
Phoenix	Short description	<u>E</u> thernet
Sort G Unsorted C Sort by name		

Figure 7-17. The Connect to GC window

3. Click the **Ethernet** button that corresponds to the GC whose password you want to reset. MON 20/20 will connect to the GC and generate a Password Reset Request ID. The *MON 20/20 - Password Reset* window displays.

Figure 7-18. The MON 20/20 - Password Reset window

X
send this unique ID bassword reset key.
⊆opy To Clipboard
Close

- 4. Click **Copy to Clipboard** and email the Password Reset Request ID to **tech.service@emerson.com**. You will be sent a Password Reset Key.
- 5. After you receive the Password Reset Key, return to the Connect to GC window and again click the **Ethernet** button that corresponds to the GC whose password you want to reset. The Login window displays.

Figure 7-19. Login	n window	
	Login	\mathbf{X}
	User Name: User PIN: Cancel	

6. Enter the User Name and the Password Reset Key and click **OK**. MON 20/20 will connect to the GC. To change the Password Reset Key, see "Changing a user's password" on page 7-28.

User Manua	
3-9000-745	

7.3.8 Finding out who is connected to the gas chromatograph

To ascertain which users are connect to the GC, select **Tools** \rightarrow **Users** \rightarrow **Logged on Users...** The *Logged on Users* window displays with a list of the users who are currently logged on to the GC, along with each user's IP address.

Logged on Users -	Eden2N3			
IP Address	Host Name	User Name	No of Connections	
55.176.59.87	USHOU-D1ITTMP8	DANIEL	2	
55.176.60.103	ushou-d2djadhav	DANIEL	2	
				-

7.4 Upgrading the firmware

This command allows you to download upgrades to the GC's firmware.

To download an upgrade, do the following:

1. Select **Upgrade Firmware...** from the **Tools** menu. The *Upgrade Firmware* window displays. The Currently Install Versions section details the status of the currently-installed applications.

	Version	Date		
Kernel	2.6.17.6	8/27/2010		
Sootloader	1.1.4	7/20/2009		
File System	2.14	9/15/2010		
Firmware	2.0	9/24/2010		
Preamp Firmware - Slot 1	1.0.11	9/22/2010		
HeaterSolenoid Firmware - Slot 2	1.0.11	8/27/2010		
BaselO Firmware - BaselO Slot	1.0.14	1/27/2010		
FFB Firmware - FFB Slot	0.5.1	8/24/2009		
grade				
ile :	2 N N N N N N N N N N N N N N N N N N N			
🗹 Download	d Version	Date	Information	*
Kernel				
Bootloader				
File System				
Firmware Preamp Firmware				
Preamp Firmware				
HeaterSolenoid Firmware				
BaselO Firmware				
LOIIRKeyPad Firmware				
			Open Download Cancel Do	
grade Progress				

Figure 7-21. The Upgrade Firmware window

- 2. Click **Open**. The Open Download File dialog displays.
- 3. Locate and select the desired .zip file and click **Open**. The .zip file's content information displays in the **Upgrade** section of the *Upgrade Firmware* window. The *Information* column will alert you to the new files that should be selected and downloaded to the GC.

Note

If the upgrade file contains a program that is newer than what is currently installed on the GC, it will automatically be selected to downloading.

4. Select the check boxes for the files that you want to download to the GC and click **Download**. While the files are downloading, you can monitor their status in the **Upgrade Progress** section.

Figure 7-22. The Upgrade Firmware window

	Version	Date	
Kernel	2.6.17.6	8/27/2010	
Bootloader	1.1.4	7/20/2009	
File System	2.14	9/15/2010	
Firmware	2.0	9/24/2010	
Preamp Firmware - Slot 1	1.0.11	9/22/2010	
HeaterSolenoid Firmware - Slot 2	1.0.11	8/27/2010	
BaselO Firmware - BaselO Slot	1.0.14	1/27/2010	
FFB Firmware - FFB Slot	0.5.1	8/24/2009	
igrade			
■C , Downloa	d Version	Date	Information
Bootloader			
File System			
Firmware			
Preamp Firmware			
HeaterSolenoid Firmware BaselO Firmware			
BaselO Firmware			
LOIIRKeyPad Firmware			
			Open Download Cancel Dow
ograde Progress			

Note If you want to halt the download, click Cancel Download.

5. When the download completes successfully, a confirmation message displays. Click **OK**. MON 20/20 disconnects from the GC and the GC reboots.

MON 20	/20
į	Upgrade done. The GC will reboot. MON2020 connection with GC will go away when you press OK. Reconnect to the GC and run Program Download again to check the current program component versions.

7.5 Cold booting

Cold booting the GC clears all its stored analysis files and logs and resets all the tables to the default settings. This is a necessary step towards refurbishing the GC or CPU board.

7.6 Viewing diagnostics

MON 20/20 provides a diagnostics window that displays vital statistics about the following software boards' revision and voltage levels:

- Preamp board
- Heater/Solenoid board
- Base IO board

This information can be useful when troubleshooting maintenance issues and in deciding if further action is required. To view the *Diagnostics* window, select **Diagnostics...** from the **Tools** menu.

Diagnostics 1. Preamp [SLOT_1] Diagnostic details : Input 5 Volt reading Input 16 Volt reading 5.00464 V 15.8615 V -On board temperature 49.1 DegC -Board Revision 3 Firmware Revision 1.0.5 2. Heater Solenoid [SLOT_2] Diagnostic details : System 3.3V Input System 5V Input -3.25907 V 4.86338 V On board temperature _ 39.4 DegC Board Revision 2 1.0.5 Firmware Revision -3. Base IO [SLOT_BASE_IO] Diagnostic details : System 3.3V Input 3.27925 V -System 5V Input 4.90374 V System 24 Volt -System 24 Volt Current Drawn--23.3046 V 0.372 A On board temperature FID Sense voltage -49.1 DegC -0.92 V Board Revision 3 1.0.6 Firmware Revision -Refresh OK

Figure 7-23. The Diagnostics window

7.7 Adjusting the sensitivity of the LOI Keys

To adjust the sensitivity of the LOI keys, do the following:

1. Select **LOI Key Sensitivity** from the **Tools** menu. The *LOI Key Sensitivity* window displays.

📧 LOI Key Sensitivity F1 F2 Exit Left Right Enter Up Down 40 40 40 40 40 40 40 40 1 -1 1 1 -1 -1 -1 -1 -_ _ 127 -127 -127 -127 -127 -127 -127 -127 -Apply same key sensitivity to all keys OK. Restore Factory Defaults Cancel

2. Adjust the sensitivity for a key by sliding the bar up or down. Raising the bar *increases* the sensitivity or the key; lowering the bar *decreases* the sensitivity.

Note

To manipulate all of the sliders togethers, select the **Apply same key sensitivity to all keys** check box.

Figure 7-24. The LOI Key Sensitivity window

Note

Click **Restore Factory Defaults** to return the sliders to their original settings.

3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

7.8 Setting the ROC card type

To set the card type for a ROC card, do the following:

1. Select **ROC Cards...** from the **Tools** menu. The *ROC Cards* window displays.

Figure 7-25. The Roc Cards window

	rd Type		
None None			
	Save	<u> </u>	Cancel
	None	None	None None

- 2. Select the card type for the ROC card from the *ROC Card Type* dropdown list. The options are:
 - None (Default)
 - ROC Analog Output
 - ROC Communication Module RS-232
 - ROC Communication Module RS-485
- 3. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

Appendix A, Component Data Table

This appendix provides a sample standard component data table as well as a table of the ISO-related components.

- Table A-1, Example Standard Component Data Table
- Table A-2, ISO Component Data Table

All values depend on a base pressure of 14.73 PSIA and a base temperature of 60 $^{\rm o}F$ (15.56 $^{\rm o}C$).

BTU components reference GPA Standard 2145-09.

Note

An asterisk (*) denotes components that are assigned temporary I.D. codes, starting with 150, as they are used.

Component Name	Mol Wt	Reid Vapor	Rel Dens Gas	Rel Dens Liquid	Lb/Gal	GPM Factor	Gross Dry BTU	Net Dry BTU	AGA 8 Component	Daniel Sim 2251 I.D. No.
Acetylene	26.04	0	0.899	0.615	0	0	1476.9	1426.5	Ethane	22
Air	28.9625	0	1	0.87586	7.3022	0.104759	0	0	AIRmix1	26
Argon	39.95	0	1.3792	0	0	0	0	0	Argon	46
Ammonia	17.03	212	0.588	0.6173	5.15	0.0874	435.4	359.8	None	*
Benzene	78.11	3.224	2.6969	0.8844	7.373	0.2798	3750.5	3599.2	n-Hexane	*
Butanes	58.1222	62.1055	2.0068	0.573515	4.78155	0.32117	3264.64	3012.45	n-Butane	33
Butene-1	56.11	63.05	1.9372	0.6013	5.013	0.2956	3087	2885.4	n-Butane	28
Butenes	56.11	55.448	1.9372	0.6097	5.0833	0.2916	3077.4	2875.73	n-Butane	32
1,2-Butadiene	54.09	20	1.8676	0.658	5.486	0.2604	2946.7	2795.5	n-Butane	35
1,3-Butadiene	54.09	60	1.8676	0.6272	5.229	0.2732	2886.6	2735.3	n-Butane	34
C3+	44.0956	188.62	1.5225	0.50719	4.2285	0.275429	2521.92	2320.36	Propane	47
C4+	58.1222	51.567	2.0068	0.5842	4.8706	0.315183	3269.85	3017.97	n-Butane	48
C4=1	56.11	63.05	1.9372	0.6013	5.013	0.2956	3087	2885.4	n-Butane	29
C5+	72.1488	15.576	2.4911	0.63071	5.2584	0.362396	4017.97	3715.58	n-Pentane	49
C6+ 47/35/17	95.9558	3.01891	3.31309	0.679907	5.66853	0.446214	5288.71	4900.62	C6mix1	08
C6+ 50/50/00	93.1887	3.29	3.21755	0.676145	5.63715	0.43619	5141.12	4762.99	C6mix2	09
C6+ Gpa 2261-99	93.1887	3.51579	3.21755	0.67556	5.63228	0.436267	5141.09	4762.99	C6mix3	10
C6+ 57/28/14	94.1904	3.37386	3.25214	0.677036	5.64458	0.439881	5194.53	4812.82	C6mix4	11
Carbon Monoxide	28.01	0	0.9671	0.801	6.68	0	321.2	321.2	CO	15
Carbon Dioxide	44.0095	0	1.5195	0.81716	6.8129	0.170618	0	0	CO2	17
Cis-2-Butene	56.11	45.54	1.9372	0.6271	5.228	0.2835	3079.3	2877.6	n-Butane	31

Component Name	Mol Wt	Reid Vapor	Rel Dens Gas	Rel Dens Liquid	Lb/Gal	GPM Factor	Gross Dry BTU	Net Dry BTU	AGA 8 Component	Daniel Sim 2251 I.D. No.
COS	60.08	0	0	0	0	0	0	0	None	42
CS2	76.14	0	2.6298	0	0	0	1267	1267	None	41
Cyclohexane	84.16	3.264	2.9057	0.7834	6.531	0.3403	4492.1	4189.4	n-Hexane	*
Cyclopentane	70.14	9.914	2.4215	0.7504	6.256	0.2961	3772.4	3520.2	n-Pentane	*
Diisobutyl	114.23	1.101	3.9439	0.6979	5.819	0.5185	6247.9	5793.9	n-Octane	*
2,3-Dimethbutan	86.18	7.404	2.9753	0.6664	5.556	0.4096	4756	4403.1	n-Hexane	*
2,2-Dimethpenta	100.21	3.492	3.4596	0.6782	5.654	0.4682	5494.6	5091.4	n-Heptane	*
2,4-Dimethpenta	100.21	3.292	3.4596	0.6773	5.647	0.4686	5499.4	5096	n-Heptane	*
3,3-Dimethpenta	100.2	2.773	3.4596	0.6976	5.816	0.455	5501.5	5098.2	n-Heptane	*
Ethane	30.069	800	1.0382	0.35628	2.9704	0.267369	1773.79	1622.75	Ethane	01
Ethyl Alcohol	46.07	2.3	1.5906	0.794	6.62	0.1839	1602.8	1451.5	None	*
Ethylbenzene	106.17	0.371	3.6655	0.8718	7.268	0.3858	5234.3	4982	n-Octane	*
Ethylene	28.0532	0	0.9686	0	0	0	1603.4	1502.47	Ethane	21
Ethylene Oxide	44.05	0	1.49	0	0	0	1459.4	1410.2	None	36
3-Ethylpentane	100.21	2.012	3.4596	0.7028	5.859	0.4517	5513.4	5110.1	n-Heptane	*
H2S	34.0809	395	1.1767	0.79886	6.6602	0.135156	638.57	588.15	H2S	40
HCL	36.46	925	1.2588	0.8558	7.135	0.1349	0	0	None	*
Helium	4.0026	0	0.1382	0.12486	1.041	0.101559	0	0	Helium	13
Hydrogen	2.02	0	0.0696	0.07	0	0	325	274.4	Hydrogen	12
i-Butane	58.1222	72.644	2.0068	0.56283	4.6925	0.327158	3259.42	3006.94	i-Butane	03
i-Butene	56.11	63.4	1.9372	0.6004	5.006	0.296	3068.2	2866.5	n-Butane	27
i-Pentane	72.1488	20.474	2.4911	0.62514	5.212	0.365621	4010.16	3707.56	i-Pentane	05

Table A-1 Example Standard Component Data Table (Continued)

MON 20/20 Software for Gas Chromatographs_

Component Name	Mol Wt	Reid Vapor	Rel Dens Gas	Rel Dens Liquid	Lb/Gal	GPM Factor	Gross Dry BTU	Net Dry BTU	AGA 8 Component	Daniel Sim 2251 I.D. No.
i-Propylbenzene	120.19	0.188	4.1498	0.8663	7.223	0.4396	5976.6	5674	n-Nonane	*
i-Octane	114.23	1.708	3.9439	0.6962	5.804	0.5199	6246.1	5792.2	n-Octane	*
Methane	16.0425	5000	0.5539	0.3	2.5	0.169487	1012.34	911.5	Methane	00
Methyl Alcohol	32.04	4.63	1.1063	0.796	6.64	0.1275	868.7	767.9	None	*
Methylcyclo C5	84.16	4.503	2.9057	0.7536	6.283	0.3538	4511.6	4209.1	n-Hexane	*
Methylcyclo C6	98.19	1.609	3.39	0.774	6.453	0.4019	5228	4874.9	n-Heptane	*
2-Methylhexane	100.21	2.271	3.4596	0.683	5.694	0.4647	5507.3	5104	n-Heptane	*
3-Methylhexane	100.21	2.13	3.4596	0.6917	5.767	0.4589	5511.3	5107.8	n-Heptane	*
m-Xylene	106.17	0.326	3.6655	0.8687	7.243	0.3871	5219.9	4967.8	n-Octane	*
n-Butane	58.1222	51.567	2.0068	0.5842	4.8706	0.315183	3269.85	3017.97	n-Butane	04
n-Decane	142.2817	0.06148	4.9126	0.73458	6.1244	0.613636	7760.81	7206.63	n-Decane	*
n-Heptane	100.2019	1.619	3.4597	0.68823	5.7379	0.461258	5515.33	5111.8	n-Heptane	45
n-Hexane	86.1754	4.961	2.9754	0.66406	5.5364	0.411121	4766.9	4414.19	n-Hexane	39
n-Nonane	128.2551	0.1809	4.4283	0.72224	6.0215	0.562592	7012.49	6508.02	n-Nonane	38
n-Octane	114.2285	0.5349	3.944	0.70655	5.8907	0.512168	6263.46	5809.41	n-Octane	20
n-Pentane	72.1488	15.576	2.4911	0.63071	5.2584	0.362396	4017.97	3715.58	n-Pentane	06
Neohexane	86.18	9.856	2.9753	0.654	5.453	0.4175	4747.2	4394.1	n-Hexane	*
Neopentane	72.15	35.9	2.4911	0.5967	4.975	0.383	3993.9	3691.4	i-Pentane	07
Nitrogen	28.0134	0	0.9672	0.80687	6.7271	0.10999	0	0	Nitrogen	14
NO2	46	0	0	0	0	0	0	0	None	19
NO	30.01	0	0	0	0	0	0	0	None	*
N2O	44.02	0	0	0	0	0	0	0	None	18

Component Name	Mol Wt	Reid Vapor	Rel Dens Gas	Rel Dens Liquid	Lb/Gal	GPM Factor	Gross Dry BTU	Net Dry BTU	AGA 8 Component	Daniel Sim 2251 I.D. No.
o-Xylene	106.2	0.264	3.6655	0.8848	7.377	0.3801	5222	4969.7	n-Octane	*
Oxygen	31.9988	0	1.1048	1.1423	9.5238	0.088739	0	0	Oxygen	16
1-Pentene	70.14	19.115	2.4215	0.6457	5.383	0.3441	3835.4	3583.3	n-Pentane	37
Propane	44.0956	188.62	1.5225	0.50719	4.2285	0.275429	2521.92	2320.36	Propane	02
Propadiene	40.07	0	1.411	0	0	0	2254.2	2254.2	Propane	24
Propylene	42.0797	227.3	1.4529	0.5226	4.3571	0.255087	2338.4	2187.05	Propane	23
Propyne	40.07	0	1.411	0	0	0	2246.2	2246.2	Propane	25
p-Xylene	106.17	0.342	3.6655	0.8657	7.218	0.3885	5220.8	4968.6	n-Octane	*
Sulfur Dioxide	64.06	88	2.2117	1.397	11.65	0.1453	0	0	CO2	43
Styrene	104.15	0.24	3.5959	0.911	7.595	0.3622	5042.7	4841	n-Octane	*
Toluene	92.14	1.032	3.1812	0.8718	7.268	0.3348	4485.4	4283.5	n-Heptane	*
Trans-2-Butene	56.11	49.8	1.9372	0.61	5.086	0.2914	3075.1	2873.4	n-Butane	30
Triptane	100.21	3.374	3.4596	0.6946	5.791	0.4571	5496.2	5093	n-Heptane	*
Water	18.0153	0.9505	0.62202	1	8.3372	0.057072	50.43	0	Water	44

Table A-1 Example Standard Component Data Table (Continued)

A-5

MON 20/20 Software for Gas Chromatographs_

Component Name

Acetylene

Ammonia

Benzene Butanes

Butene-1 Butenes

1,2-Butadiene

1,3-Butadiene

C6+ 47/35/17

C6+ 50/50/00

C6+57/28/14

Cis-2-Butene

Carbon Monoxide Carbon Dioxide

C6+ GPA 2261-

C3+

C4+

C4=1

C5+

99

COS

Air

Argon

Molar Mass	Sum Factor (0°C)	Sum Factor (15°C)	Sum Factor (20°C)	CV Sup kJ/Mol (0°C)	CV Sup kJ/Mol (15°C)	CV Sup kJ/Mol (20°C)	CV Sup kJ/Mol (25°C)	CV Inf kJ/Mol (0°C)	CV Inf kJ/Mol (15°C)	CV Inf kJ/Mol (20°C)	CV Inf kJ/Mol (25°C)
26.038	0.0949	0.0837	0.0837	1301.86	1301.37	1301.21	1301.05	1256.79	1256.94	1256.98	1257.03
28.9625	0	0	0	0	0	0	0	0	0	0	0
39.948	0.0316	0.0283	0.0265	0	0	0	0	0	0	0	0
17.0306	0.1225	0.1095	0.1049	384.57	383.51	383.16	382.81	316.96	316.86	316.82	316.79
78.114	0.3017	0.272	0.253	3305.03	3302.86	3302.15	3301.43	3169.81	3169.56	3169.48	3169.38
58.1222	0.2059	0.183	0.1743	2879.01	2875.17	2873.98	2872.8	2653.64	2653.01	2652.86	2652.72
56.108	0.1871	0.1732	0.1673	2721.55	2718.7	2717.75	2716.82	2541.25	2540.97	2540.86	2540.76
56.108	0.1923	0.176	0.1717	2713.09	2710.23	2709.31	2708.36	2532.79	2532.49	2532.42	2532.27
54.092	0.2121	0.1924	0.1871	2597.13	2595.12	2594.45	2593.79	2461.91	2461.82	2461.78	2461.74
54.092	0.1844	0.1703	0.1643	2544.13	2542.1	2541.43	2540.77	2408.91	2408.8	2408.76	2408.72
44.0956	0.1682	0.1534	0.147	2461.51	2458.25	2457.23	2456.16	2264.71	2264.52	2264.38	2264.25
58.1222	0.2281	0.2049	0.1947	3081.63	3077.47	3076.32	3074.97	2841.63	2841.98	2841.83	2841.68
56.108	0.1871	0.1732	0.1673	2721.55	2718.7	2717.75	2716.82	2541.25	2540.97	2540.86	2540.76
72.1488	0.2999	0.2651	0.2505	3754.2	3749.68	3748.71	3746.71	3464.63	3468.87	3468.75	3468.52
95.9558	0.389	0.3459	0.3331	4663.16	4657.69	4655.86	4654.08	4316.22	4315.67	4315.46	4315.27
93.1887	0.3704	0.3305	0.3183	4533.05	4527.71	4525.93	4524.19	4194.99	4194.46	4194.25	4194.07
93.1887	0.3943	0.3503	0.3373	4697.93	4692.42	4690.58	4688.78	4348.61	4348.06	4347.84	4347.66
94.1904	0.3781	0.3367	0.3243	4580.15	4574.76	4572.96	4571.2	4238.87	4238.34	4238.12	4237.94
28.01	0.0265	0.0224	0.02	282.8	282.91	282.95	282.98	282.8	282.91	282.95	282.98
44.0095	0.0819	0.0748	0.0728	0	0	0	0	0	0	0	0
56.108	0.1975	0.1817	0.1761	2714.9	2711.9	2711	2710	2534.6	2534.2	2534.1	2533.9
60.076	0.1225	0.114	0.1095	548.01	548.15	548.19	548.23	548.01	548.15	548.19	548.23

Table A-2 ISO Component Data Table

A-6

MON 20/20 Software for Gas Chromatographs

Component Name	Molar Mass	Sum Factor (0°C)	Sum Factor (15°C)	Sum Factor (20°C)	CV Sup kJ/Mol (0°C)	CV Sup kJ/Mol (15°C)	CV Sup kJ/Mol (20°C)	CV Sup kJ/Mol (25°C)	CV Inf kJ/Mol (0°C)	CV Inf kJ/Mol (15°C)	CV Inf kJ/Mol (20°C)	CV Inf kJ/Mol (25°C)
CS2	76.143	0.2145	0.1949	0.1871	1104.06	1104.32	1104.41	1104.49	1104.06	1104.32	1104.41	1104.49
Cyclohexane	84.161	0.3209	0.2864	0.2757	3960.67	3956.02	3954.47	3952.96	3690.23	3689.42	3689.13	3688.86
Cyclopentane	70.14	0.255	0.2302	0.2236	3326.14	3322.19	3320.88	3319.59	3100.77	3100.03	3099.76	3099.51
Diisobutyl	114.23	0	0	0	0	0	0	0	0	0	0	0
2,3-Dimethbutan	86.177	0.3	0.2739	0.2569	4193.63	4188.6	4186.93	4185.28	3878.11	3877.57	3877.36	3877.17
2,2-Dimethpenta	100.21	0	0	0	0	0	0	0	0	0	0	0
2,4-Dimethpenta	100.21	0	0	0	0	0	0	0	0	0	0	0
3,3-Dimethpenta	100.2	0	0	0	0	0	0	0	0	0	0	0
Ethane	30.069	0.1	0.0922	0.0894	1564.34	1562.14	1561.41	1560.69	1429.12	1428.84	1428.74	1428.64
Ethyl Alcohol	46.07	0	0	0	0	0	0	0	0	0	0	0
Ethylbenzene	106.167	0.4858	0.4207	0.4037	4613.14	4609.53	4608.32	4607.15	4387.77	4387.37	4387.2	4387.07
Ethylene	28.0532	0.0866	0.08	0.0775	1413.51	1412.11	1411.65	1411.18	1323.36	1323.24	1323.2	1323.15
Ethylene Oxide	44.05	0	0	0	0	0	0	0	0	0	0	0
3-Ethylpentane	100.21	0	0	0	0	0	0	0	0	0	0	0
H2S	34.0809	0.1	0.1	0.1	562.94	562.38	562.19	562.01	517.87	517.95	517.97	517.99
HCL	36.46	925	1.2588	0.8558	7.135	0.1349	0	0	0	0	0	0
Helium	4.0026	0.0006	0.0002	0	0	0	0	0	0	0	0	0
Hydrogen	2.0159	-0.004	-0.0048	-0.0051	286.63	286.15	285.99	285.83	241.56	241.72	241.76	241.81
i-Butane	58.1222	0.2049	0.1789	0.1703	2874.2	2870.58	2869.38	2868.2	2648.83	2648.42	2648.26	2648.12
i-Butene	56.108	0.1871	0.1703	0.1673	2704.8	2702	2701.1	2700.2	2524.5	2524.3	2524.2	2524.1
i-Pentane	72.1488	0.251	0.228	0.2168	3535.98	3531.68	3530.24	3528.83	3265.54	3265.08	3264.89	3264.73
i-Propylbenzene	120.19	0	0	0	0	0	0	0	0	0	0	0
i-Octane	114.23	0	0	0	0	0	0	0	0	0	0	0
Methane	16.0425	0.049	0.0447	0.0436	892.97	891.56	891.09	890.63	802.82	802.69	802.65	802.6

Table A-2 ISO Component Data Table

MON 20/20 Software for Gas Chromatographs.

A-7

(A-8)

Component Name	Molar Mass	Sum Factor (0°C)	Sum Factor (15°C)	Sum Factor (20°C)	CV Sup kJ/Mol (0°C)	CV Sup kJ/Mol (15°C)	CV Sup kJ/Mol (20°C)	CV Sup kJ/Mol (25°C)	CV Inf kJ/Mol (0°C)	CV Inf kJ/Mol (15°C)	CV Inf kJ/Mol (20°C)	CV Inf kJ/Mol (25°C)
Methyl Alcohol	32.042	0.4764	0.3578	0.3286	766.59	765.09	764.59	764.09	676.44	676.22	676.14	676.06
Methylcyclo C5	84.161	0.313	0.2811	0.2702	3977.04	3972.46	3970.93	3969.44	3705.34	3705.59	3705.86	3706.6
Methylcyclo C6	98.188	0.3808	0.3376	0.3256	4600.64	4602.35	4604.09	4609.34	4292.53	4292.78	4293.06	4293.82
2-Methylhexane	100.21	0	0	0	0	0	0	0	0	0	0	0
3-Methylhexane	100.21	0	0	0	0	0	0	0	0	0	0	0
m-Xylene	106.167	0	0	0	0	0	0	0	0	0	0	0
n-Butane	58.1222	0.2069	0.1871	0.1783	2883.82	2879.76	2878.57	2877.4	2658.45	2657.6	2657.45	2657.32
n-Decane	142.2817	0.7523	0.645	0.614	6842.69	6834.9	6832.31	6829.77	6346.88	6346.14	6345.85	6345.59
n-Heptane	100.2019	0.4123	0.3661	0.3521	4862.87	4857.18	4855.29	4853.43	4502.28	4501.72	4501.49	4501.3
n-Hexane	86.1754	0.3286	0.295	0.2846	4203.23	4198.24	4196.58	4194.95	3887.71	3887.21	3887.01	3886.84
n-Nonane	128.2551	0.6221	0.5385	0.5148	6182.91	6175.82	6173.46	6171.15	5732.17	5731.49	5731.22	5730.99
n-Octane	114.2285	0.5079	0.445	0.4278	5522.4	5516.01	5513.88	5511.8	5116.73	5116.11	5115.87	5115.66
n-Pentane	72.1488	0.2864	0.251	0.2345	3542.89	3538.6	3537.17	3535.77	3272.45	3272	3271.83	3271.67
Neohexane	86.177	0.2898	0.2627	0.255	4185.84	4180.83	4179.15	4177.52	3870.32	3869.8	3869.59	3869.41
Neopentane	72.15	0.2387	0.2121	0.2025	3521.72	3517.43	3516.01	3514.61	3251.28	3250.83	3250.67	3250.51
Nitrogen	28.0134	0.0224	0.0173	0.0173	0	0	0	0	0	0	0	0
NO2	46.0006	0	0	0	0	0	0	0	0	0	0	0
NO	30.006	0	0	0	0	0	0	0	0	0	0	0
N2O	44.02	0	0	0	0	0	0	0	0	0	0	0
o-Xylene	106.167	0.5128	0.4427	0.4231	4602.17	4598.64	4597.48	4596.31	4376.8	4376.48	4376.34	4376.23
Oxygen	31.9988	0.0316	0.0283	0.0265	0	0	0	0	0	0	0	0
1-Pentene	70.14	0.249	0.2258	0.2191	3381.29	3377.75	3376.57	3375.42	3155.92	3155.59	3155.45	3155.34
Propane	44.0956	0.1453	0.1338	0.1288	2224.01	2221.1	2220.13	2219.17	2043.71	2043.37	2043.23	2043.11
Propadiene	40.065	0.1414	0.1304	0.1265	1945.25	1943.96	1943.53	1943.11	1855.1	1855.09	1855.08	1855.08

Table A-2 ISO Component Data Table

Component Name	Molar Mass	Sum Factor (0°C)	Sum Factor (15°C)	Sum Factor (20°C)	CV Sup kJ/Mol (0°C)	CV Sup kJ/Mol (15°C)	CV Sup kJ/Mol (20°C)	CV Sup kJ/Mol (25°C)	CV Inf kJ/Mol (0°C)	CV Inf kJ/Mol (15°C)	CV Inf kJ/Mol (20°C)	CV Inf kJ/Mol (25°C)
Propylene	42.0797	0.1378	0.1265	0.1225	2061.57	2059.43	2058.72	2058.02	1926.35	1926.13	1926.05	1925.97
Propyne	40.065	0	0	0	0	0	0	0	0	0	0	0
p-Xylene	106.167	0	0	0	0	0	0	0	0	0	0	0
Sulfur Dioxide	64.065	0.1549	0.1449	0.1414	0	0	0	0	0	0	0	0
Styrene	104.15	0	0	0	0	0	0	0	0	0	0	0
Toluene	92.141	0.3886	0.3421	0.3286	3952.72	3949.81	3948.84	3947.89	3772.42	3772.08	3771.95	3771.83
Trans-2-Butene	56.108	0.1975	0.1789	0.1761	2711.1	2708.3	2707.4	2706.4	2530.8	2530.5	2530.5	2530.3
Triptane	100.21	0	0	0	0	0	0	0	0	0	0	0
Water	18.0153	0.2646	0.2345	0.2191	45.074	44.433	44.224	44.016	0	0	0	0

Table A-2 ISO Component Data Table

This page is intentionally left blank.

Appendix B, Data computations

B.1 Data acquisition

Every second, exactly 50 equally-spaced data samples are taken (i.e., one data sample every 20 milliseconds) for analysis by the controller assembly.

As a part of the data acquisition process, groups of incoming data samples are averaged together before the result is stored for processing. Nonoverlapping groups of N samples are averaged and stored, and thus reduce the effective incoming data rate to 40/N samples per second. For example, if N = 5, then a total of 40/5 or 6 (averaged) data samples are stored every second.

The value for the variable N is determined by the selection of a Peak Width parameter (*PW*). The relationship is:

$$N = PW$$

where PW is given in seconds. Allowable values of N are 1 to 63; this range corresponds to PW values of 2 to 63 seconds.

The variable N is known as the integration factor. This term is used because N determines how many points are averaged, or integrated, to form a single value. The integration of data upon input, before storing, serves two purposes:

- The statistical noise on the input signal is reduced by the square root of *N*. In the case of N = 4, a noise reduction of two would be realized.
- The integration factor controls the bandwidth of the chromatograph signal. It is necessary to match the bandwidth of the input signal to that of the analysis algorithms in the controller assembly. This prevents small, short-duration perturbations from being recognized as true peaks by the program. It is therefore important to choose a Peak Width that corresponds to the narrowest peak in the group under consideration.

B.2 Peak detection

For normal area or peak height concentration evaluation, the determination of a peak's start point and end point is automatic. The manual determination of start and end points is used only for area calculations in the Forced Integration mode. Automatic determination of peak onset or start is initiated whenever Integrate Inhibit is turned off. Analysis is started in a region of signal quiescence and stability, such that the signal level and activity can be considered as baseline values.

Note

The controller assembly software assumes that a region of signal quiescence and stability will exist.

Having initiated a peak search by turning Integrate Inhibit off, the controller assembly performs a point by point examination of the signal slope. This is achieved by using a digital slope detection filter, a combination low pass filter and differentiator. The output is continually compared to a user-defined system constant called Slope Sensitivity. A default value of 8 is assumed if no entry is made. Lower values make peak onset detection more sensitive, and higher values make detection less sensitive. Higher values (20 to 100) would be appropriate for noisy signals, e.g. high amplifier gain.

Onset is defined where the detector output exceeds the baseline constant, but peak termination is defined where the detector output is less than the same constant.

Sequences of fused peaks are also automatically handled. This is done by testing each termination point to see if the region immediately following it satisfies the criteria of a baseline. A baseline region must have a slope detector value less than the magnitude of the baseline constant for a number of sequential points. When a baseline region is found, this terminates a sequence of peaks.

A zero reference line for peak height and area determination is established by extending a line from the point of the onset of the peak sequence to the point of the termination. The values of these two points are found by averaging the four integrated points just prior to the onset point and just after the termination points, respectively. The zero reference line will, in general, be non-horizontal, and thus compensates for any linear drift in the system from the time the peak sequence starts until it ends.

In a single peak situation, peak area is the area of the component peak between the curve and the zero reference line. The peak height is the distance from the zero reference line to the maximum point on the component curve. The value and location of the maximum point is determined from quadratic interpolation through the three highest points at the peak of the discrete valued curve stored in the controller assembly.

For fused peak sequences, this interpolation technique is used both for peaks, as well as, valleys (minimum points). In the latter case, lines are dropped from the interpolated valley points to the zero reference line to partition the fused peak areas into individual peaks.

The use of quadratic interpolation improves both area and height calculation accuracy and eliminates the effects of variations in the integration factor on these calculations.

For calibration, the controller assembly may average several analyses of the calibration stream.

B.3 Analysis computations

There are two basic analysis algorithms included in the GC:

- Area Analysis calculates area under component peak
- Peak Height Analysis measures height of component peak

B.3.1 Concentration analysis with response factor

Calibration

The concentration calculations discussed as follows require a unique response factor for each component in an analysis. These factors may be manually entered by an operator or automatically calculated by calibrating the system.

$$ARF_n = \frac{Area_n}{Cal_n}$$
 or $HRF_n = \frac{Ht_n}{Cal_n}$

where

ARF_n	Area response factor for component n in area per mole percent (%).
HRF_n	Height response factor for component n .
$Area_n$	Area associated with component n in calibration gas.
Ht_n	Height associated with component n in mole percent in calibration gas
Cal_n	Amount of component n in mole percent of calibration gas.

Calculated response factors are stored by the GC for use in the concentration calculations, and are printed out in the configuration and calibration reports.

$$RFAVG_n = \frac{\sum_{i=1}^{k} RF_i}{k}$$

$RFAVG_n$	Area or height average response factor for component n .
RF_i	Area or height response factor for component n from the calibration run.
k	Number of calibration runs actually used to calculate the response factors.

The percent deviation of new RF average from old RF average is calculated in the following manner:

$$deviation = \left[\frac{RF_{new} - RF_{old}}{RF_{old}} \times 100\right]$$

where the absolute value of percent deviation for alarm has been previously entered by the operator.

Calculation in mole percent w/o normalization

Once response factors have been determined by the controller or entered by the operator, component concentrations are determined for each analysis using the following equations:

$$CONC_n = \frac{Area_n}{ARF_n}$$
 or $CONC_n = \frac{Ht_n}{HRF_n}$

$CONC_n$	Concentration of component n in mole percent.
AREA _n	Area of component n in unknown sample.
ARF_n	Response factor of component n calculated from area of calibration sample. Units are area per mole percent.
Ht_n	Peak height of component n in unknown sample.
HRF_n	Response factor of component n calculated from peak height of calibration sample. Units are height per mole percent.

Note that the average concentration of each component will also be calculated when data averaging is requested.

Component concentrations may be input through analog inputs 1 to 4 or may be fixed. If a fixed value is used, the calibration for that component is the mole percent that will be used for all analyses:.

$$CONCN_n = \frac{CONC_n}{k} \times 100$$
$$\sum_{i=1}^{k} CONC_i$$

where

CONCN _n	Normalized concentration of component n in percent of total gas concentration.
$CONC_n$	Non-normalized concentration of component n in mole percent.
$CONC_i$	Non-normalized concentration (in mole percent) from each of the k components to be grouped into this normalization.
k	Number of components to be included in the normalization.

B.4 Post analysis computations

B.4.1 Liquid equivalent computations

The equivalent liquid volume, in gallons per 1000 standard cubic feet (GPM) is given by:

$$GPM_n = CONCN_n \times LCF_n \times \frac{BASEPRS}{14.73} \times \frac{BASETEMP + 459.67}{60 + 459.67}$$

GPM_n	Gallons/1000 standard cubic feet of component n .
$CONCN_n$	Normalized (if selected) concentration of component n .
LCF_n	Liquid equivalent conversion factor for component n at $14.73\ \rm PSIA$ and 60 degrees F.
BASE PRS	Base (contact) Pressure specified; defaults to 14.73.

B.4.2 Heating value calculations

• Dry Gross BTU of Total Gas

$$DRYBTU|CF = \frac{n=1}{100} [(CONCN)_n (BTU|CF)_n]$$

where

DRYBTU/CF	Uncorrected dry BTU content per cubic foot of total gas sample.
CONCN _n	Normalized (if selected) concentration of component n , calculated from peak analysis.
BTU/CF_n	Energy content per cubic foot of component n , stored in permanent memory.
Р	Total number of components to be used in calculation of total BTU/CF.
100	Removed the 100 factored into the calculation of the concentration earlier in the analysis.

• Ideal Gas Relative Density

$$TOTALRD = \frac{\sum_{n=1}^{P} CONC_n(RD_n)}{100}$$

RD_n	Relative Density of component "n"
TOTAL RD	Relative Density of total gas sample
CONCN _n	Normalized (if selected) concentration of component n , calculated from peak analysis.
Р	Total number of components to be used in calculation of total BTU/ CF.
100	Removed the 100 factored into the calculation of the concentration earlier in the analysis.

• Real (corrected) Gas Relative Density

The Ideal Gas Relative Density, D_I , is corrected to the Real Gas Relative Density, D_R , by dividing by the compressibility factor, Z, for gas mixture at 60 °F and one atmosphere pressure and multiplying by the compressibility factor of air at the same conditions:

$$D_R = \frac{D_I Z_{b(air)}}{Z_{b(gas)}}$$

where

D_I	Ideal Gas Relative Density. See Appendix A for more information.
$Z_{b(air)}$	Compressibility factor of air, or 0.99959.
$Z_{b(gas)}$	Compressibility factor of gas mixture.

Compressibility Factor Dry BTU

Compressibility equations use calculations from the American Gas Association's *Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases: AGA Report #8.*

$$CORRDRYBTU = \frac{DRYBTU}{Z}$$

DRYBTU	Dry Gross BTU of Total Gas; see page 7 for details.
--------	---

Z Compressibility factor.

BASE PRS Base (contract) pressure specified; defaults to 14.73 PSIA.

Corrected Saturated BTU

$$CORRSATBTU = \frac{(DRYBTU)(0.9826)}{Z}$$

where

٠

٠

•

DRYBTU	Dry Gross BTU of Total Gas; see page 7 for details.
CORRSATBTU	Corrected saturated BTU content per cubic foot of total gas sample at base conditions of BASE PRS and 60 °F.
Ζ	Compressibility Factor Dry BTU; see page 8 for details.
BASEPRS	Base (contract) pressure specified; defaults to 14.73 PSIA.

Compressibility and Base Pressure

Compressibility and base pressure corrections for Dry BTU are:

$$CorrDryBTU = \left(\frac{DryBTUatBasePressure}{Z}\right) \left(\frac{ContractPressure}{BasePressure}\right)$$

where

CORRDRYBTU	Dry Gross BTU of Total Gas; see page 7 for details.
Ζ	Compressibility Factor Dry BTU; see page 8 for details.
BASE PRESSURE	Base (contract) pressure specified; defaults to 14.73 PSIA

BTU Calculations

Note that the BTU calculations apply to Gross dry, saturated, actual BTU and Net dry, saturated, and actual BTU

$$GrossActualBTU(corr) = GrossDryBTU(corr) \times \left(100 - \frac{(WVC)}{100}\right)$$

WVC Water volume content provided by a "live analog input".

$$WI = \frac{CORR(GROSS)BTU}{\sqrt{RD}}$$

where

<i>W.I.</i>	Wobbe index value
CORRGROSSBTU	Corrected Dry BTU for Total Gas Sample; see page 8 for details.
RD	Real Relative Density; see page 8 for details.

Note

All components in the sample must be measured in order to calculate weight percent.

$$WTpercent_{n} = \frac{(CONC_{n})(MW_{n})}{\sum_{i=1}^{k} (CONC_{i})(MW_{i})} \times 100$$

$WT percent_n$	Weight percent of component n .	
$CONC_n$	Concentration in mole percent of component n .	
Mw_n	Molecular weight of component n .	
$\sum_{i=1}^{\kappa}$	Sum of weights of all components in sample.	

$$AVGMW = \sum_{i=1}^{k} (CONC_i)(MW_i)$$

AVGMWAverage molecular weight. $^{\kappa}$ Sum of weights of all components in sample. $\sum_{i=1}^{k}$

$$LVpercent = \frac{(WTpercent_n) \div (D_n)}{\sum_{i=1}^{k} (WTpercent_i) \div (D_i)} \times 100$$

Note

All components in the sample must be measured in order to calculate liquid volume from mole percent.

where

LV percent	Liquid volume.
WT percent	Weight percent.
D	Density.
$\sum_{i=1}^{\kappa}$	Sum of all components in sample.

$$RVP = \frac{\sum_{i=1}^{k} (CONC_i)(VP_i)}{100}$$

RVP	Reid vapor pressure.
$CONC_i$	Normalized concentration of component i in mole percent.
VP_i	Vapor pressure at 100 degrees F of component i (GPA2145 = 94).

Note

All components in the sample must be measured in order to calculate LRDT.

$$LRD_T = \frac{\sum_{i=1}^{k} (LVpercent_i)(LRD_i)}{100}$$

where

LRD_T	Liquid Relative Density of sample, relative to water at 60 °F.
LRD_i	Liquid Relative Density of component i (GPA2145-94).
LVpercent	Liquid Volume Percent.

Note

All components in the sample must be measured in order to calculate liquid density.

$$LD_T = \frac{\sum_{i=1}^{k} (LV_i)(LD_i)}{100}$$

- LD_T Liquid Density of total sample in pounds per gallon
- LD_i Liquid Density of component *i* (GPA 2145-94).
- LV_i Liquid Volume Percent of component *i*.

$$GD = (RD)(76.4976)$$

where	
GD	Gas Density in lb/1000 ft ³ .
RD	Relative Density (relative to air).
76.4976	Density of air at 14.73 PSIA and 60 °F, in lb/1000 ft ³ .

B.4.3 Multi-level calibration

The properties of each gas component can be viewed using the Component Data menu. Included with the component properties in the Component Data Table are four coefficients labeled Multi-Level Calib 'a', 'b', 'c', and 'd', for each component. If these parameters are all set to zero, then linear calibration is used. See Section B.3.1 for the Response Factor calculations.

If any of these parameters have a value other than zero, then multi-level, or polynomial calibration is used for that component.

The response factors are then calculated as:

$$ResponseFactor = \frac{aP^3 + bP^2 + cP + d}{CalibrationConcentration} \pmod{\%}$$

where

 P
 Peak size from average calibration runs.

 Coefficients:
 Calculated offline and entered after multi-level calibration using several--
typically seven--calibration gases.

 NOTE:
 If the coefficient values are correct, the response factor will be close
to 1.

The mole% value in the sample gas is then calculated as

$$Mole \% = \frac{aP^3 + bP^2 + cP + d}{response factor}$$

where	
Р	Peak size measured in sample gas.
Coefficients: <i>a,b,c</i> , and <i>d</i>	Calculated offline and entered after multi-level calibration using severaltypically sevencalibration gases.
	NOTE : If the coefficient values are correct, the response factor will be close to 1.

B.4.4 Indirect calibration

Component gases that are *not* found in the calibration gas, but may be found in the sample gas, can be assigned a relative response factor that is a fixed multiple of a reference component that *is* found in the calibration gas.

The Relative Response Factors and Reference Component Values are included in the Component Data Table. See Appendix A for more information.

If the Reference Component is **None**, then normal (direct) calibration is used.

If the Reference Component is defined, (e.g. Propane) then the mole% value for the indirect component (e.g. neoC5), is calculated as:

$$mole\% (neoC5) = mole\% (Propane) \left(\frac{P(neoC5)}{P(Propane)}\right) (RRFneoC5)$$

where

RRF Relative Response Factor

Appendix C, Modbus registers list

There are two GC Modbus registers that may be of interest to the developer: SIM_2251 and User_Modbus. Differences betweeb the two registers are summarized in Table C-1.

SIM_2251	User_Modbus
Serial slave port.	Serial slave port.
Modified protocol that allows floating point numbers to be transmitted over Modbus via 2251 emulation slave type.	The standard Gould Modbus protocol that accommodates PLC Emulation LO-HI.
Nearly all register contents are predefined; a few 9000-series registers can be user-defined (i.e., read-write).	Boolean (coils) are predefined. Numeric (registers) are user-defined.
Variables assigned to registers can be listed in the GC Config Report. For instructions and an example report, see Section 5.12.	Variables assigned to registers can be listed in the GC Config Report. For instructions and an example report, see Section 5.12.
When using the Modbus Test program, set <i>Register Mode</i> to "DANIEL" to view register contents (see Section 7.1.2).	When using the Modbus Test software, set <i>Register Mode</i> to "PLC LH" to view register contents (see Section 7.1.2).

Table C-1 Comparison of SIM_2251 and User_Modbus

C.1 User_Modbus register list

Table C-2 lists only variables included in the User_Modbus Boolean Modbus registers. These registers are not user-defined and primarily contain alarm flags that may be useful for debugging purposes. To use the Modbus program to view the contents of these registers, you will need to set the *Function* parameter to 1 (Read Coil). See Section 7.1 for details on using the Modbus program.

All other User_Modbus registers can be defined by the user. To define User_Modbus register contents, see Section 4.12.3.

To obtain a complete list of register assignments, both SIM_2251 and User_Modbus, print a GC Config Report. See "Generating a GC Configuration Report" on page 5-65 for more information.

Slave Nam	ne USER_MODBU	JS			
Modbus Reg.	Variable Name	Field Name	India S	ces C	
Boolean (C	Coils)				
0	sysalarm_set		1	1	Application Checksum Failure
1	sysalarm_set		2	1	ROM Checksum Failure
2	sysalarm_set		3	1	RAM Diagnostics Failure
3	sysalarm_set		4	1	A/D Converter Failure
4	sysalarm_set		5	1	Detector Oven Failure
5	sysalarm_set		6	1	Liquid Sample Valve Heater Failure
6	sysalarm_set		7	1	Sample System Oven Failure
7	sysalarm_set		8	1	Catalytic Converter Failure
8	sysalarm_set		9	1	Heater 5 Failure
9	sysalarm_set		10	1	Heater 6 Failure
10	sysalarm_set		11	1	Heater 1 Controller Failure
11	sysalarm_set		12	1	Heater 2 Controller Failure
12	sysalarm_set		13	1	Heater 3 Controller Failure
13	sysalarm_set		14	1	Heater 4 Controller Failure
14	sysalarm_set		15	1	Heater 5 Controller Failure
15	sysalarm_set		16	1	Heater 6 Controller Failure
16	sysalarm_set		17	1	FID Flame out
17	sysalarm_set		18	1	Warmstart Calibration Failure
18	sysalarm_set		19	1	Valve Timing Failure
19	sysalarm_set		20	1	Excess Response Factor Deviation
20	sysalarm_set		21	1	M200 Invalid Non-Volatile Data
21	sysalarm_set		22	1	M200 Invalid A Module Data
22	sysalarm_set		23	1	M200 Invalid B Module Data
23	sysalarm_set		24	1	M200 Bad Options
24	sysalarm_set		25	1	M200 Stack Overflow

Table C-2 List of User_Modbus Registers

Slave Nam	ne USER_MODBU	JS			
Modbus Reg.	Variable Name	Field Name	India S	ces C	
Boolean (C	Coils)		1		l
25	sysalarm_set		26	1	M200 Hardware Shutdown
26	sysalarm_set		27	1	M200 Synchronization Failure
27	sysalarm_set		28	1	Preamp Input 1 Out of Range - DET1
28	sysalarm_set		29	1	Preamp Input 2 Out of Range - DET1
29	sysalarm_set		30	1	Preamp Input 3 Out of Range - DET1
30	sysalarm_set		31	1	Preamp Input 4 Out of Range - DET1
31	sysalarm_set		32	1	Preamp Failure - DET1
32	sysalarm_set		33	1	Analog Output 1 HIGH
33	sysalarm_set		34	1	Analog Output 2 HIGH
34	sysalarm_set		35	1	Analog Output 3 HIGH
35	sysalarm_set		36	1	Analog Output 4 HIGH
36	sysalarm_set		37	1	Analog Output 5 HIGH
37	sysalarm_set		38	1	Analog Output 6 HIGH
38	sysalarm_set		39	1	Analog Output 7 HIGH
39	sysalarm_set		40	1	Analog Output 8 HIGH
40	sysalarm_set		41	1	Analog Output 9 HIGH
41	sysalarm_set		42	1	Analog Output 10 HIGH
42	sysalarm_set		43	1	Analog Output 11 HIGH
43	sysalarm_set		44	1	Analog Output 12 HIGH
44	sysalarm_set		45	1	Analog Output 13 HIGH
45	sysalarm_set		46	1	Analog Output 14 HIGH
46	sysalarm_set		47	1	Analog Output 15 HIGH
47	sysalarm_set		48	1	Analog Output 16 HIGH
48	sysalarm_set		49	1	Analog Output 1 LOW
49	sysalarm_set		50	1	Analog Output 2 LOW
50	sysalarm_set		51	1	Analog Output 3 LOW

Table C-2 List of User_Modbus Registers

Slave Nam	e USER_MODBU	JS			
Modbus Reg.	Variable Name	Field Name	India S	ces C	
Boolean (C	coils)		I		1
51	sysalarm_set		52	1	Analog Output 4 LOW
52	sysalarm_set		53	1	Analog Output 5 LOW
53	sysalarm_set		54	1	Analog Output 6 LOW
54	sysalarm_set		55	1	Analog Output 7 LOW
55	sysalarm_set		56	1	Analog Output 8 LOW
56	sysalarm_set		57	1	Analog Output 9 LOW
57	sysalarm_set		58	1	Analog Output 10 LOW
58	sysalarm_set		59	1	Analog Output 11 LOW
59	sysalarm_set		60	1	Analog Output 12 LOW
60	sysalarm_set		61	1	Analog Output 13 LOW
61	sysalarm_set		62	1	Analog Output 14 LOW
62	sysalarm_set		63	1	Analog Output 15 LOW
63	sysalarm_set		64	1	Analog Output 16 LOW
64	sysalarm_set		65	1	Analyzer Failure
65	sysalarm_set		66	1	Power Failure
66	sysalarm_set		67	1	Fused Peak Overflow - Noisy Baseline
67	sysalarm_set		68	1	CPU Battery Low
68	sysalarm_set		69	1	GC Idle
69	sysalarm_set		70	1	Real-Time Clock Failure
70	sysalarm_set		71	1	Analog Input 1 HIGH
71	sysalarm_set		72	1	Analog Input 2 HIGH
72	sysalarm_set		73	1	Analog Input 3 HIGH
73	sysalarm_set		74	1	Analog Input 4 HIGH
74	sysalarm_set		75	1	Analog Input 1 LOW
75	sysalarm_set		76	1	Analog Input 2 LOW
76	sysalarm_set		77	1	Analog Input 3 LOW
77	sysalarm_set		78	1	Analog Input 4 LOW
78	sysalarm_set		79	1	NA

Table C-2 List of User_Modbus Registers

Slave Nam	Slave Name USER_MODBUS				
Modbus Reg.	Variable Name	Field Name	India S	ces C	
Boolean (C	coils)		I		I
79	sysalarm_set		80	1	NA
80	sysalarm_set		81	1	NA
81	sysalarm_set		82	1	NA
82	sysalarm_set		83	1	NA
83	sysalarm_set		84	1	NA
84	sysalarm_set		85	1	NA
85	lmtalarm_set		1	1	
86	lmtalarm_set		2	1	
87	lmtalarm_set		3	1	
88	lmtalarm_set		4	1	
89	lmtalarm_set		5	1	
90	lmtalarm_set		6	1	
91	lmtalarm_set		7	1	
92	lmtalarm_set		8	1	
93	lmtalarm_set		9	1	
94	lmtalarm_set		10	1	
95	lmtalarm_set		11	1	
96	lmtalarm_set		12	1	
97	lmtalarm_set		13	1	
98	lmtalarm_set		14	1	
99	lmtalarm_set		15	1	
100	lmtalarm_set		16	1	
101	lmtalarm_set		17	1	
102	lmtalarm_set		18	1	
103	lmtalarm_set		19	1	
104	lmtalarm_set		20	1	
105	stream_data	stream_togg	1	1	
106	stream_data	stream_togg	2	1	
107	stream_data	stream_togg	3	1	

Table C-2 List of User_Modbus Registers

Slave Name USER_MODBUS					
Modbus Reg.	Variable Name	Field Name	Indic S	ces C	
Boolean (C	oils)				
108	stream_data	stream_togg	4	1	
109	stream_data	stream_togg	5	1	
110	stream_data	stream_togg	6	1	
111	stream_data	stream_togg	7	1	
112	stream_data	stream_togg	8	1	
113	doutcur		1	1	
114	doutcur		2	1	
115	doutcur		3	1	
116	doutcur		4	1	
117	doutcur		5	1	

Table C-2 List of User_Modbus Registers

C.2 SIM_2251 Modbus register list

To use the Modbus Test program and view the contents of SIM_2251 registers, set the Register Mode to "Daniel," as noted in Table C-1.

For a complete list of register assignments, both SIM_2251 and User_Modbus, print a GC Config Report. See "Generating a GC Configuration Report" on page 5-65 for more information.

Note

The information in the following tables is derived from engineering specification number ES-17128-005, "Model 2251 Enhanced Specification Chromatograph Controller Modbus Communication Indices."

Reg. No.	Description
3001	Component Table n (where n equals the CDT # used during the last run) - Component #1
3002	Component Table n (where n equals the CDT # used during the last run) - Component #2
3003	Component Table n (where n equals the CDT # used during the last run) - Component #3
3004	Component Table n (where n equals the CDT # used during the last run) - Component #4
3005	Component Table n (where n equals the CDT # used during the last run) - Component #5
3006	Component Table n (where n equals the CDT # used during the last run) - Component #6
3007	Component Table n (where n equals the CDT # used during the last run) - Component #7
3008	Component Table <i>n</i> (where <i>n</i> equals the CDT # used during the last run) - Component #8
3009	Component Table n (where n equals the CDT # used during the last run) - Component #9
3010	Component Table n (where n equals the CDT # used during the last run) - Component #10
3011	Component Table n (where n equals the CDT # used during the last run) - Component #11
3012	Component Table n (where n equals the CDT # used during the last run) - Component #12
3013	Component Table n (where n equals the CDT # used during the last run) - Component #13
3014	Component Table n (where n equals the CDT # used during the last run) - Component #14
3015	Component Table n (where n equals the CDT # used during the last run) - Component #15
3016	Component Table n (where n equals the CDT # used during the last run) - Component #16
3017	Component Table n (where n equals the CDT # used during the last run) - Component #1
3018	Component Table n (where n equals the CDT # used during the last run) - Component #2
3019	Component Table n (where n equals the CDT # used during the last run) - Component #3

Table C-3 List of SIM_2251 Registers

Reg. No.	Description
3020	Component Table n (where n equals the CDT # used during the last run) - Component #4
3021	Component Table n (where n equals the CDT # used during the last run) - Component #5
3022	Component Table n (where n equals the CDT # used during the last run) - Component #6
3023	Component Table n (where n equals the CDT # used during the last run) - Component #7
3024	Component Table n (where n equals the CDT # used during the last run) - Component #8
3025	Component Table n (where n equals the CDT # used during the last run) - Component #9
3026	Component Table n (where n equals the CDT # used during the last run) - Component #10
3027	Component Table n (where n equals the CDT # used during the last run) - Component #11
3028	Component Table n (where n equals the CDT # used during the last run) - Component #12
3029	Component Table n (where n equals the CDT # used during the last run) - Component #13
3030	Component Table n (where n equals the CDT # used during the last run) - Component #14
3031	Component Table n (where n equals the CDT # used during the last run) - Component #15
3032	Component Table n (where n equals the CDT # used during the last run) - Component #16
3033	Analysis Time (in 1/30ths of a second)
3034	Current Stream
3035	Mask of streams associated with Component Table #1 (Bit $2^n = 1$ implies stream <i>n</i> included)
3036	Current Month (1-12)
3037	Current day (1-31)
3038	Current Year (0-99)
3039	Current Hour (0-24)
3040	Current Minute (0-59)
3041	Cycle Start Time - Month
3042	Cycle Start Time - Day
3043	Cycle Start Time - Year
3044	Cycle Start Time - Hour
3045	Cycle Start Time - Minute

Table C-3	List of SIM	_2251 Registers
1 0010 0 0		

8	
TO	
BER	
2010	

Reg. No.								Desci	iption							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3046	checksum failure	anlyzr failure	D/A 3 high	D/A 3 low	D/A 2 high	D/A 2 low	D/A 1 high	D/A 1 low	spare	spare	A/D 2 high	A/D 2 low	A/D 1 high	A/D 1 low	spare	spare
3047	spare	spare	spare	spare	spare	spare	spare	spare	spare	spare	spare	spare	adjust preamp	preamp failure	RF % dev	power failure
								Stre	am #1							
3048		#15 low	#14 low	#13 low	#12 low	#11 low	#10 low	#9 low	#8 low	#7 low	#6 low	#5 low	#4 low	#3 low	#2 low	O.D.A. #1 low
								Stre	am #1							
3049		#15 high	#14 high	#13 high	#12 high	#11 high	#10 high	#9 high	#8 high	#7 high	#6 high	#5 high	#4 high	#3 high	#2 high	O.D.A. #1 high
								Stre	am #2							•
3050		#15 low	#14 low	#13 low	#12 low	#11 low	#10 low	#9 low	#8 low	#7 low	#6 low	#5 low	#4 low	#3 low	#2 low	O.D.A. #1 low
								Stre	am #2							
3051		#15 high	#14 high	#13 high	#12 high	#11 high	#10 high	#9 high	#8 high	#7 high	#6 high	#5 high	#4 high	#3 high	#2 high	O.D.A. #1 high
								Stre	am #3							
3052		#15 low	#14 low	#13 low	#12 low	#11 low	#10 low	#9 low	#8 low	#7 low	#6 low	#5 low	#4 low	#3 low	#2 low	O.D.A. #1 low
								Stre	am #3							
3053		#15 high	#14 high	#13 high	#12 high	#11 high	#10 high	#9 high	#8 high	#7 high	#6 high	#5 high	#4 high	#3 high	#2 high	O.D.A. #1 high
								Stre	am #4	•	•	•				
3054		#15 low	#14 low	#13 low	#12 low	#11 low	#10 low	#9 low	#8 low	#7 low	#6 low	#5 low	#4 low	#3 low	#2 low	O.D.A. #1 low
								Stre	am #4							
3055		#15 high	#14 high	#13 high	#12 high	#11 high	#10 high	#9 high	#8 high	#7 high	#6 high	#5 high	#4 high	#3 high	#2 high	O.D.A. #1 high

Table C-4 SIM_2251 MODBUS REGISTER LIST (BIT NUMBERS)

MON 20/20 Software for Gas Chromatographs_

C-9

Reg. No.	Description															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Stream #5															
3056		#15 low	#14 low	#13 low	#12 low	#11 low	#10 low	#9 low	#8 low	#7 low	#6 low	#5 low	#4 low	#3 low	#2 low	O.D.A. #1 low
	Stream #5															
3057		#15 high	#14 high	#13 high	#12 high	#11 high	#10 high	#9 high	#8 high	#7 high	#6 high	#5 high	#4 high	#3 high	#2 high	O.D.A. #1 high
3058	58 New data flag. Set upon completion of calculations.															
3059	Cal/Analysis flag. Set to 1 if analysis data. Set to 0 if calculation data.															

Table C-4 SIM_2251 MODBUS REGISTER LIST (BIT NUMBERS)

C-10

Reg. No.	Description
5001	Cycle time (in 1/30ths of a second)
5002	Calibration cycle time (in 1/30ths of a second)

Note

The following registers contain no values until the completion of atleast one analysis run.

Reg. No.	Description
7001	Mole % - Component #1
7002	Mole % - Component #2
7003	Mole % - Component #3
7004	Mole % - Component #4
7005	Mole % - Component #5
7006	Mole % - Component #6
7007	Mole % - Component #7
7008	Mole % - Component #8
7009	Mole % - Component #9
7010	Mole % - Component #10
7011	Mole % - Component #11
7012	Mole % - Component #12
7013	Mole % - Component #13
7014	Mole % - Component #14
7015	Mole % - Component #15
7016	Mole % - Component #16
7017	GPM or Weight % - Component #1
7018	GPM or Weight % - Component #2
7019	GPM or Weight % - Component #3
7020	GPM or Weight % - Component #4
7021	GPM or Weight % - Component #5

Table C-6 SIM_2251 Modbus register list (floating point)

Reg. No.	Description
7022	GPM or Weight % - Component #6
7023	GPM or Weight % - Component #7
7024	GPM or Weight % - Component #8
7025	GPM or Weight % - Component #9
7026	GPM or Weight % - Component #10
7027	GPM or Weight % - Component #11
7028	GPM or Weight % - Component #12
7029	GPM or Weight % - Component #13
7030	GPM or Weight % - Component #14
7031	GPM or Weight % - Component #15
7032	GPM or Weight % - Component #16
7033	BTU Dry
7034	BTU Saturated
7035	Specific Gravity
7036	Compressibility
7037	WOBBE Index
7038	Total Unnormalized Mole %
7039	Total GPM
7040	Calculation, User-defined #1
7041	Calculation, User-defined #2
7042	Calculation, User-defined #3
7043	Calculation, User-defined #4
7044	Calculation, User-defined #5
7045-7053	Unused
7054	Actual BTU
7055	Averages, User-defined #1
7056	Averages, User-defined #2
7057	Averages, User-defined #3
7058	Averages, User-defined #4
7059	Averages, User-defined #5
7060	Averages, User-defined #6

Table C-6 SIM_2251 Modbus register list (floating point)

Reg. No.	Description
7061	Averages, User-defined #7
7062	Averages, User-defined #8
7063	Averages, User-defined #9
7064	Averages, User-defined #10
7065	Averages, User-defined #11
7066	Averages, User-defined #12
7067	Averages, User-defined #13
7068	Averages, User-defined #14
7069	Averages, User-defined #15
7070	First Archive of Average, User-defined #1
7071	First Archive of Average, User-defined #2
7072	First Archive of Average, User-defined #3
7073	First Archive of Average, User-defined #4
7074	First Archive of Average, User-defined #5
7075	First Archive of Average, User-defined #6
7076	First Archive of Average, User-defined #7
7077	First Archive of Average, User-defined #8
7078	First Archive of Average, User-defined #9
7079	First Archive of Average, User-defined #10
7080	First Archive of Average, User-defined #11
7081	First Archive of Average, User-defined #12
7082	First Archive of Average, User-defined #13
7083	First Archive of Average, User-defined #14
7084	First Archive of Average, User-defined #15
7085	Analog Input #1 - Current Value in Engineering Units
7086	Analog Input #2 - Current Value in Engineering Units
7087	Actual BTU (Last Calibration)
7088	Dry BTU (Last Calibration)
7089	Saturated BTU (Last Calibration)
7090	WOBBE Index (Last Calibration)
7091	Relative Density (Last Calibration)

Table C-6 SIM_2251 Modbus register list (floating point)

Reg. No.	Description		
7092	Compressibility (Last Calibration)		
7093	Total GPM (Last Calibration)		
7094	Total Unnormalized (Last Calibration)		
7095-7110	Response Factors (#1-16), Component Table n (where n equals the CDT # used during the last run)		
7111-7126	Response Factors (#1-16), Component Table n (where n equals the CDT # used during the last run)		
7127-7162	Averages, User-define 1-36		
	Note: Registers 7127-7141 are copies of registers 7055-7069.		
7163-7198	Maximum values from averages, User-define 1-36		
7199-7234	Minimum values from averages, User-define 1-36		
7235-7270	First (most recent) archive of averages, User-define 1-36		
	Note: Registers 7235-7249 are copies of registers 7070-7084.		
7271-7306	First (most recent) archive of maximum values from averages, User-define 1-36		
7307-7342	First (most recent) archive of minimum values from averages, User-define 1-36		
7343-7378	Second archive of averages, User-define 1-36		
7379-7414	Second archive of maximum values from averages, User-define 1-36		
7415-7450	Second archive of minimum values from averages, User-define 1-36		
7451-7486	Third (oldest) archive of averages, User-define 1-36		
7487-7522	Third (oldest) archive of maximum values from averages, User-define 1-36		
7523-7558	Third (oldest) archive of minimum values from averages, User-define 1-36		

Table C-6 SIM_2251 Modbus register list (floating point)

Table C-7 SIM_2251 Modbus Communication Indices

Reg. No.	Description: RW = read/write (1) or read-only (0) LEN = length REGS = number of Modbus registers required				LEN = length	
	RW	RW TYPE LEN REGS VARIABLE NAME, POINTER, OR DESCRIPTION				
9001	0	string	6	3	device model number	
9004	0 string 4 2 software revision		software revision			
9006	1	integer	2	1	system time month (1-12)	
9007	1	integer	2	1	system time day (1-31)	
9008	1	integer	2	1 system time year (0-99)		

Reg. No.	Description: RW = read/write (1) or read-only (0) LEN = length REGS = number of Modbus registers required				
	RW	TYPE	LEN	REGS	VARIABLE NAME, POINTER, OR DESCRIPTION
9009	1	integer	2	1	system time hour (0-23)
9010	1	integer	2	1	system time minutes (0-59)
9011	1	integer	2	1	system time seconds (0-59)
9012	1	integer	2	1	system time day (0-6)
9013	0	integer	2	1	plug ID (Modbus or Device ID, per DIP switch settings)
9014	1	long	4	2	site ID
9016	0	string	12	5	device serial number
9022	0	integer	2	1	analysis time 1
9023	0	integer	2	1	analysis time 2 (for dual detector system)
9024	0	integer	2	1	cycle time 1
9025	0	integer	2	1	cycle time 2 (for dual detector system)
9026	0	integer	2	1	run time 1
9027	0	integer	2	1	run time 2 (for dual detector system)
9028	0	integer	2	1	current stream 1
9029	0	integer	2	1	current stream 2 (for dual detector system)
9030	0	integer	2	1	system mode 1
9031	0	integer	2	1	system mode 2 (for dual detector system)
9032	0	integer	2	1	calibrating 1
9033	0	integer	2	1	calibrating 2 (for dual detector system)
9034	0	integer	2	1	active alarm (red light at GC controller)
9035	0	integer	2	1	unack'd alarm (yellow light at GC controller)
9036	0	integer	2	1	hourly average reset - year
9037	0	integer	2	1	hourly average reset - month
9038	0	integer	2	1	hourly average reset - day
9039	0	integer	2	1	hourly average reset - hour
9040	0	integer	2	1	hourly average reset - minutes
9041	0	integer	2	1	24-hour average reset - year
9042	0	integer	2	1	24-hour average reset - month
9043	0	integer	2	1	24-hour average reset - day

Table C-7 SIM_2251 Modbus Communication Indices

Reg. No.	Descr	Description: RW = read/write (1) or read-only (0) LEN = length REGS = number of Modbus registers required			
	RW	TYPE	LEN	REGS	VARIABLE NAME, POINTER, OR DESCRIPTION
9044	0	integer	2	1	24-hour average reset - hour
9045	0	integer	2	1	24-hour average reset - minutes
9046	0	integer	2	1	weekly average reset - year
9047	0	integer	2	1	weekly average reset - month
9048	0	integer	2	1	weekly average reset - day
9049	0	integer	2	1	weekly average reset - hour
9050	0	integer	2	1	weekly average reset - minutes
9051	0	integer	2	1	monthly average reset - year
9052	0	integer	2	1	monthly average reset - month
9053	0	integer	2	1	monthly average reset - day
9054	0	integer	2	1	monthly average reset - hour
9055	0	integer	2	1	monthly average reset - minutes
9056	0	integer	2	1	variable average reset - year
9057	0	integer	2	1	variable average reset - month
9058	0	integer	2	1	variable average reset - day
9059	0	integer	2	1	variable average reset - hour
9060	0	integer	2	1	variable average reset - minutes

Table C-7 SIM_2251 Modbus Communication Indices

Appendix D, Basic and advanced system variables

D.1 GPA system variables

Group	Basic Calculations	Advanced Calculations
Analysis Component	Mole % Weight % Weight % Carbon Liquid Volume % Gal/1000 SCF GPA Real Rel Den Gas HV Gross BTU Dry HV Net BTU Dry HV Gross BTU/lb Dry HV Gross BTU/lb Dry HV Sup MJ/m3 Dry HV Sup MJ/m3 Dry HV Inf MJ/m3 Dry HV Sup MJ/kg Dry Peak Area Peak Height Peak Width @ Half-Height Component Number	Mole % Weight % Weight % Carbon Liquid Volume % Gal/1000 SCF Response Factor Retention Time GPA Real Rel Den Gas HV Gross BTU Dry HV Gross BTU Dry HV Net BTU Dry HV Gross BTU/Ib Dry HV Gross BTU/Ib Dry HV Sup MJ/m3 Dry HV Sup MJ/m3 Dry HV Inf MJ/m3 Dry HV Sup MJ/kg Dry HV Inf MJ/kg Dry Peak Area Peak Height Peak Width @ Half-Height Component Number

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Analysis Stream	Avg Molecular Weight	Analysis Time
	Base Pressure	Avg Molecular Weight
	Base Temperature	Base Pressure
	GPA Z Factor	Base Temperature
	GPA Real Rel Den Gas	CricondenTherm Pres
	GPA Wobbe Index	CricondenTherm Temp Cycle Time
	Gas Den lbm/1000 ft3	Dewpoint Pres
	HV Gross BTU Dry	Dewpoint Temp
	HV Gross BTU Sat	GPA Z Factor
	HV Net BTU Dry	GPA Gas Den kg/m3
	HV Net BTU Sat	GPA Real Rel Den Gas
	HV Gross BTU/lb Dry	GPA Wobbe Index
	HV Sup MJ/m3 Dry	Gal/1000 SCF C2+
	HV Sup MJ/m3 Sat	Gal/1000 SCF C3+
	HV Inf MJ/m3 Dry	Gal/1000 SCF C4+
	HV Inf MJ/m3 Sat	Gal/1000 SCF C5+
	HV Sup MJ/kg Dry	Gal/1000 SCF C6+
	HV Inf MJ/kg Dry	Gas Den lbm/1000 ft3
	HV Sup Kcal/kg Dry	HV Gross BTU Dry
	HV Inf Kcal/kg Dry	HV Gross BTU Sat
	Reid Vapor Press	HV Gross BTU Act
	Start Time	HV Net BTU Dry
	Total Unnormalized Conc	HV Net BTU Sat
	Weight % Carbon	HV Net BTU Act
	Weight % C from Methane	HV Gross BTU/lb Dry

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations	Advanced Calculations
Analysis Stream		HV Sup MJ/m3 Dry
(cont.)		HV Sup MJ/m3 Sat
		HV Sup MJ/m3 Act
		HV Inf MJ/m3 Dry
		HV Inf MJ/m3 Sat
		HV Inf MJ/m3 Act
		HV Sup MJ/kg Dry
		HV Inf MJ/kg Dry
		HV Sup Kcal/m3 Dry
		HV Sup Kcal/m3 Sat
		HV Sup Kcal/m3 Act
		HV Inf Kcal/m3 Dry
		HV Inf Kcal/m3 Sat
		HV Inf Kcal/m3 Act
		HV Sup Kcal/kg Dry
		HV Inf Kcal/kg Dry
		Liquid Density lb/gal
		Liquid Density kg/m3
		No of Peaks Found
		No of Comp
		Reid Vapor Press
		Rel Den Liq @ 60F
		Rel Den Liq @ 15C
		Start Time
		Total Unnormalized Conc
		Weight % Carbon
		Weight % C from Methane

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Analysis Optional Base Pressures	n/a	Opt Base PressureGal/1000 SCF C2+Gal/1000 SCF C3+Gal/1000 SCF C4+Gal/1000 SCF C5+Gal/1000 SCF C6+HV Gross BTU DryHV Gross BTU SatHV Gross BTU ActHV Net BTU DryHV Net BTU SatHV Net BTU ActHV Sup MJ/m3 DryHV Sup MJ/m3 SatHV Sup MJ/m3 ActHV Inf MJ/m3 ActHV Sup Kcal/m3 DryHV Sup Kcal/m3 SatHV Inf Kcal/m3 ActHV Inf Kcal/m3 SatHV Inf Kcal/m3 ActHV Inf Kcal/m3 Act
Calibration	n/a	Area or Height
Component	n/a	Resp Factor Resp Factor % Dev Ret Time Ret Time % Dev Component Number
Calibration Stream	n/a	Start Time
Final Calibration Component	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations	Advanced Calculations
Final Calibration	RF Dev Alarm	GPA Z Factor
Stream	Start Time	GPA Real Rel Den Gas
		GPA Wobbe Index
		HV Gross BTU Dry
		HV Gross BTU Sat
		RF Dev Alarm
		Start Time
		Total Unnormalized Conc
Last Analysis	Mole %	Mole %
Component	Weight %	Weight %
	Weight % Carbon	Weight % Carbon
	Liquid Volume %	Liquid Volume %
	Gal/1000 SCF	Gal/1000 SCF
	GPA Real Rel Den Gas	Response Factor
	HV Gross BTU Dry	Retention Time
	HV Net BTU Dry	GPA Real Rel Den Gas
	HV Gross BTU/lb Dry	HV Gross BTU Dry
	HV Sup MJ/m3 Dry	HV Net BTU Dry
	HV Inf MJ/m3 Dry	HV Gross BTU/lb Dry
	HV Sup MJ/kg Dry	HV Sup MJ/m3 Dry
	HV Inf MJ/kg Dry	HV Inf MJ/m3 Dry
	Peak Area	HV Sup MJ/kg Dry
	Peak Height	HV Inf MJ/kg Dry
	Peak Width @ Half-Height	Peak Area
	Component Number	Peak Height
		Peak Width @ Half-Ht
		Component Number

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Last Analysis Stream	Avg Molecular Weight Base Pressure Base Temperature GPA Z Factor GPA Real Rel Den Gas GPA Wobbe Index Gas Den lbm/1000 ft3 HV Gross BTU Dry HV Gross BTU Sat HV Net BTU Sat HV Net BTU Sat HV Gross BTU/lb Dry HV Sup MJ/m3 Dry HV Sup MJ/m3 Dry HV Sup MJ/m3 Sat HV Inf MJ/m3 Sat HV Sup MJ/kg Dry HV Inf MJ/kg Dry HV Inf Kcal/kg Dry Is Cal Run Reid Vapor Press Start Time Stream No Total Unnormalized Conc Weight % Carbon Weight % C from Methane	Analysis Time Avg Molecular Weight Base Pressure Base Temperature CricondenTherm Pres CricondenTherm Temp Cycle Time Dewpoint Pres Dewpoint Temp GPA Z Factor GPA Gas Den kg/m3 GPA Real Rel Den Gas GPA Wobbe Index Gal/1000 SCF C2+ Gal/1000 SCF C2+ Gal/1000 SCF C3+ Gal/1000 SCF C5+ Gal/1000 SCF C6+ Gas Den lbm/1000 ft3 HV Gross BTU Dry HV Gross BTU Sat HV Gross BTU Act HV Net BTU Dry HV Net BTU Sat HV Net BTU Act HV Net BTU Act HV Net BTU Act HV Sup MJ/m3 Sat HV Sup MJ/m3 Cry HV Sup MJ/m3 Sat HV Inf MJ/m3 Act HV Inf MJ/m3 Act HV Inf MJ/m3 Cry HV Sup MJ/m3 Cry HV Sup MJ/m3 Cry HV Inf MJ/m3 Cry HV Sup MJ/m3 Cry HV Inf MJ/m3 Cry HV Sup Kcal/m3 Cry HV Sup Kcal/m3 Cry HV Sup Kcal/m3 Cry HV Inf Kcal/m3 Cry H

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations	Advanced Calculations
Last Analysis Stream (cont.)		Reid Vapor Press Rel Den Liq @ 60F Rel Den Liq @ 15C Start Time Stream No Total Unnormalized Conc Weight % Carbon Weight % C from Methane
Last Analysis Optional Base Pressures	n/a	Opt Base Pressure Gal/1000 SCF C2+ Gal/1000 SCF C3+ Gal/1000 SCF C3+ Gal/1000 SCF C4+ Gal/1000 SCF C5+ Gal/1000 SCF C6+ HV Gross BTU Dry HV Gross BTU Sat HV Gross BTU Act HV Net BTU Dry HV Net BTU Sat HV Net BTU Act HV Sup MJ/m3 Dry HV Sup MJ/m3 Sat HV Sup MJ/m3 Sat HV Inf MJ/m3 Cry HV Inf MJ/m3 Cry HV Inf MJ/m3 Cry HV Sup Kcal/m3 Cry HV Sup Kcal/m3 Cry HV Sup Kcal/m3 Cry HV Inf Kcal/m3 Cry
Last Calibration Component	n/a	Area or Height Resp Factor Ret Time Component Number
Last Calibration Stream	n/a	Start Time Stream No
Last Final Calibration Component	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Last Final Calibration	RF Dev Alarm Start Time	GPA Z Factor GPA Real Rel Den Gas
Stream	Stream No	GPA Wobbe Index HV Gross BTU Dry HV Gross BTU Sat RF Dev Alarm Start Time Stream No Total Unnormalized Conc
Hardware - Heaters	Temperature	Temperature
Hardware - Valves	Current Value	Current Value
Hardware - Discrete Inputs	Current Value	Current Value
Hardware - Discrete Outputs	Current Value	Current Value
Hardware - Analog Inputs	Current Value	Current Value
Hardware - Analog Outputs	Current Value	Current Value
Application - System	Default Stream Sequence	Default Stream Sequence
Application - Component Data Table	n/a	Det # Ret Time Resp Fact Calib Conc RT Secs Dev Resp Fact % Gross Dry BTU Net Dry BTU Gross Dry BTU/lb HV Sup MJ/m3 HV Inf MJ/m3 HV Sup MJ/kg HV Inf MJ/kg Gals/1000 SCF Reid Vapor LBs/Gallon Rel Dens Gas Rel Dens Liquid Mole Weight Carbon Weight Rel Resp Fact Multi-level Calib 'a' Multi-level Calib 'b' Multi-level Calib 'b'

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations	Advanced Calculations	
Application - Validation Data Table	n/a	Nominal Value Percent Deviation	
Application - Averages	Min Max Avg Samples	Min Max Avg Samples	
Application - User Defined Calculation	Calc Result	Calc Result	
Application - Limit Alarms	Alarm Low On Alarm High On	Alarm Low On Alarm High On Value Causing Alarm Violated Alarm Limit Date	
Application - System Alarms	Alarm On	Alarm On Value Causing Alarm Violated Alarm Limit Date	
Application - Streams	n/a	Usage TEV Total Runs Avg Runs Start Time Interval Calibration Stream Base Pressure Base Temperature Optional Pressure 1 Optional Pressure 2 Optional Pressure 3 Next Cal/Val Time Status	
Validation	Average Value Current Value	Average Value Current Value	
GC Control	Auto Sequence Halt Single Stream Calibration Validation	Auto Sequence Halt Single Stream Calibration Validation	

Group	Basic Calculations	Advanced Calculations
GC Status	Current Stream	Current Stream
	Last Stream	Last Stream
	Cycle Clock Counter	Cycle Clock Counter
	Cycle Time	Cycle Time
	Anly Time	Anly Time
	Current Mode	Current Mode
	Next Stream	Next Stream
	Last Mode	Last Mode
	Calibration Failed	Calibration Failed
	Validation Failed	Validation Failed
	Cycle Complete Pulse	Cycle Complete Pulse
	Current Day	Current Day
	Current Month	Current Month
	Current Year	Current Year
	Current Hour	Current Hour
	Current Minute	Current Minute
	Current Second	Current Second
	Active Alarm Flag	Active Alarm Flag
	UnAck Alarm Flag	UnAck Alarm Flag

D.2 ISO system variables

Group	Basic Calculations	Advanced Calculations
Analysis Component	Mole % Weight % Liquid Volume % ISO CV Sup Dry - Pri ISO CV Sup Dry - Pri ISO CV Sup Dry - Sec ISO CV Inf Dry - Sec Peak Area Peak Height Peak Width @ Half-Height Component Number	Mole %Weight %Liquid Volume %Response FactorRetention TimeISO CV Sup Dry - PriISO CV Inf Dry - PriISO CV Sup Dry - SecISO CV Inf Dry - SecISO CV Inf Dry - SecPeak AreaPeak HeightPeak Width @ Half-HeightComponent Number

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations	Advanced Calculations
Analysis Stream	Avg Molecular Weight Base Pressure Start Time Total Unnormalized Conc ISO Temp RefC - Pri ISO Temp RefV - Pri ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO Gas Den kg/m3 - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri ISO Wobbe Index Inf - Pri	Avg Molecular Weight Base Pressure Start Time Total Unnormalized Conc ISO Temp RefC - Pri ISO Temp RefV - Pri ISO CV Sup Dry - Pri ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO Gas Den kg/m3 - Pri ISO Gas Den kg/m3 - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri ISO Wobbe Index Sup - Pri ISO CV Sup Dry - Sec ISO CV Sup Dry - Sec ISO CV Sup Dry - Sec ISO CV Inf Dry - Sec ISO CV Inf Dry - Sec ISO Z Factor - Pri ISO Z Factor - Pri ISO Gas Den kg/m3 - Pri ISO Gas Den kg/m3 - Pri ISO Real Rel Den Gas - Pri
Analysis Optional Base Pressures	n/a	Opt Base Pressure ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO CV Sup Dry - Sec ISO CV Sup Sat - Sec ISO CV Inf Dry - Sec ISO CV Inf Sat - Sec
Calibration	n/a	Area or Height

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Component	n/a	Resp Factor Resp Factor % Dev Ret Time Ret Time % Dev Component Number
Calibration Stream	n/a	Start Time
Final Calibration Component	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number	Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number
Final Calibration Stream	RF Dev Alarm Start Time	ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO Z Factor - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri RF Dev Alarm Start Time Total Unnormalized Conc
Last Analysis Component	Mole % Weight % Liquid Volume % ISO CV Sup Dry - Pri ISO CV Inf Dry - Pri ISO CV Sup Dry - Sec ISO CV Inf Dry - Sec Peak Area Peak Height Peak Width @ Half-Ht Component Number	Mole % Weight % Liquid Volume % Response Factor Retention Time ISO CV Sup Dry - Pri ISO CV Inf Dry - Pri ISO CV Sup Dry - Sec ISO CV Inf Dry - Sec Peak Area Peak Height Peak Width @ Half-Ht Component Number

700XA Gas Chromatograph OCTOBER 2010

Group	Basic Calculations		
Last Analysis Stream	Avg Molecular Weight Base Pressure Is Cal Run Start Time Stream No Total Unnormalized Conc ISO Temp RefC - Pri ISO Temp RefV - Pri ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO Gas Den kg/m3 - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri ISO Wobbe Index Inf - Pri	Analysis Time Avg Molecular Weight Base Pressure CricondenTherm Pres CricondenTherm Temp Cycle Time Dewpoint Pres Dewpoint Temp Is Cal Run No of Peaks Found No of Comp Reid Vapor Press Rel Den Liq @ 60F Rel Den Liq @ 15C Start Time Stream No Total Unnormalized Conc ISO Temp RefC - Pri ISO Temp RefC - Pri ISO Temp RefC - Sec ISO Temp RefV - Sec ISO Temp RefV - Sec ISO CV Sup Dry - Pri ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO CV Sup Sat - Pri ISO CV Sup Sat - Sec ISO CV Sup Sat - Sec ISO CV Sup Sat - Sec ISO CV Inf Sat - Sec ISO Gas Den kg/m3 - Pri ISO Gas Den kg/m3 - Pri ISO Real Rel Den Gas - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri ISO Wobbe Index Sup - Sec ISO Wobbe Index Sup - Sec ISO Wobbe Index Inf - Pri ISO Wobbe Index Inf - Pri ISO Wobbe Index Inf - Sec ISO Soot Index ISO Incomp Combustion Fact ISO Latent Heat Cap Ratio	
Last Analysis Optional Base Pressures	n/a	Opt Base Pressure ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri ISO CV Inf Dry - Pri ISO CV Inf Sat - Pri ISO CV Sup Dry - Sec ISO CV Sup Sat - Sec ISO CV Inf Dry - Sec ISO CV Inf Sat - Sec	

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Last Calibration Component	n/a	Area or Height Resp Factor Ret Time Component Number
Last Calibration Stream	n/a	Start Time Stream No
New Resp FactorNew Resp FNew RF Update FlagNew RF UpResp Factor % DevResp FactorOld Ret TimeOld Ret TimNew Ret TimeNew Ret TiNew RT Update FlagNew RT UpRet Time % DevRet Time %		Calib Conc Old Resp Factor New Resp Factor New RF Update Flag Resp Factor % Dev Old Ret Time New Ret Time New RT Update Flag Ret Time % Dev Component Number
Last Final Calibration	RF Dev Alarm Start Time	ISO CV Sup Dry - Pri ISO CV Sup Sat - Pri
Stream	Stream No	ISO Z Factor - Pri ISO Real Rel Den Gas - Pri ISO Wobbe Index Sup - Pri RF Dev Alarm Start Time Stream No Total Unnormalized Conc
Hardware - Heaters	Temperature	Temperature
Hardware - Valves	Current Value	Current Value
Hardware - Discrete Inputs	Current Value	Current Value
Hardware - Discrete Outputs	Current Value	Current Value
Hardware - Analog Inputs	Current Value	Current Value
Hardware - Analog Outputs	Current Value	Current Value
Application - System	Default Stream Sequence	Default Stream Sequence

Group	Basic Calculations	Advanced Calculations
Application - Component Data Table	n/a Det # Ret Time Resp Fact Calib Conc RT Secs Dev Resp Fact % Sum Factor - Pri Sum Factor - Sec CV Sup KJ/mol - Pri CV Inf KJ/mol - Pri CV Sup KJ/mol - Sec Rel Dens Gas Rel Dens Liquid Mole Weight Rel Resp Fact Multi-level Calib 'a' Multi-level Calib 'b' Multi-level Calib 'b' Multi-level Calib 'd'	
Application - Validation Data Table	n/a	Percent Deviation Percent Deviation
Application - Averages	Min Max Avg Samples	Min Max Avg Samples
Application - User Defined Calculation	Calc Result	Calc Result
Application - Limit Alarms	Alarm Low On Alarm High On	Alarm Low On Alarm High On Value Causing Alarm Violated Alarm Limit Date
Application - System Alarms	Alarm On	Alarm On Value Causing Alarm Violated Alarm Limit Date

System Reference Manual 3-9000-744

Group	Basic Calculations	Advanced Calculations
Application - Streams	n/a	Usage TEV Total Runs Avg Runs Start Time Interval Calibration Stream Base Pressure Optional Pressure 1 Optional Pressure 2 Optional Pressure 3 Next Cal/Val Time Status
Validation	Average Value Current Value	Average Value Current Value
GC Control	Auto Sequence Halt Single Stream Calibration Validation	Auto Sequence Halt Single Stream Calibration Validation
GC Status	Current Stream Last Stream Cycle Clock Counter Cycle Time Anly Time Current Mode Next Stream Last Mode Calibration Failed Validation Failed Cycle Complete Pulse Current Day Current Month Current Year Current Hour Current Hour Current Minute Current Second Active Alarm Flag UnAck Alarm Flag	Current Stream Last Stream Cycle Clock Counter Cycle Time Anly Time Current Mode Next Stream Last Mode Calibration Failed Validation Failed Validation Failed Cycle Complete Pulse Current Day Current Month Current Year Current Hour Current Minute Current Minute Current Second Active Alarm Flag UnAck Alarm Flag

This page is intentionally left blank.

Appendix E, Creating custom calculations

To create or edit a customized calculation using GC analysis data, do the following:

1. Select **Applications** \rightarrow **Calculations** \rightarrow **User Defined...**. The *User Defined Calculations* window appears, containing a list of all the user-defined calculations that are available to the GC.

	Label	Comment	Calc Frequency			Error Description	
1							
l	User Cal 01		Disable		0	This calculation has been disabled!	
l	User Cal 02		Disable		0	This calculation has been disabled	
l	User Cal 03		Disable		0	This calculation has been disabled!	
l	User Cal 04		Disable		0	This calculation has been disabled!	
l	User Cal 05		Disable		0	This calculation has been disabled!	
l	User Cal 06		Disable		0	This calculation has been disabled!	
l	User Cal 07		Disable		0	This calculation has been disabled!	
l	User Cal 08		Disable		0	This calculation has been disabled!	
l	User Cal 09		Disable		0	This calculation has been disabled!	
l	User Cal 10		Disable		0	This calculation has been disabled	
l	User Cal 11		Disable		0	This calculation has been disabled!	
l	User Cal 12		Disable		0	This calculation has been disabled!	
l	User Cal 13		Disable		0	This calculation has been disabled	
l	User Cal 14		Disable		0	This calculation has been disabled!	
l	User Cal 15		Disable		0	This calculation has been disabled!	
l	User Cal 16		Disable		0	This calculation has been disabled!	
l	User Cal 17		Disable		0	This calculation has been disabled!	
l	User Cal 18		Disable		0	This calculation has been disabled	
l	User Cal 19		Disable		0	This calculation has been disabled!	
l	User Cal 20		Disable		0	This calculation has been disabled!	
l	User Cal 21		Disable		0	This calculation has been disabled	
l	User Cal 22		Disable		0	This calculation has been disabled!	
l	User Cal 23		Disable		0	This calculation has been disabled!	
l	User Cal 24		Disable		0	This calculation has been disabled!	
l	User Cal 25		Disable		0	This calculation has been disabled!	
l	User Cal 26		Disable		0	This calculation has been disabled!	

Figure E-1. The User Defined Calculations window

2. Click **Insert before** to add a row to the *User Defined Calculations* table.

Note

To delete this--or any--row from the table, click **Delete**.

3. Double-click the *Label* cell and enter a name for the calculation you are about to create. If you want to enter a short description for the new calculation, double-click the *Comment* cell and enter it there.

4. Click Edit. The Edit User-defined Calculation window appears.

	Edit User-defined Calculation - "Two Component Average"	
	Calculation Steps : #0	
Α		
	Clear All Clear Line Copy Paste Insert Condition	В
	Edit	
<u>C</u>		
	Clear Delete Item Evaluate Exp Done	
	x^y SQRT abs (7 8 9 / Constants	<u> </u>
D	sin cos tan] 4 5 6 × Temporary Variables Variables	
	log10 log2 in e 1 2 3 -	
	and or xor 0 +/ + System Variables Edit Constants	
	Output :	
F	▶	
	Calculate Evaluate Ok Cancel	

Figure E-2. The Edit User-defined Calculation window

In MON 20/20, building a calculation is similar to building a simple program. You have constants and two types of variables available, as well as two calculation-building commands. You can also add comments that will be ignored by the application but that can help you explain the logic and structure of the calculation you are designing. The following is a description of the design elements of the *Edit Userdefined Calculation* window:

- Element **A** Called the **Calculation Steps Viewer**, this element displays the line-by-line construction of the calculation as it is being built. The following commands allow you to interact with this area:
 - Click **Clear All** to clear the content of the Calculation Steps Viewer.
 - Click **Clear Line** to clear the content of the selected line.

Note

If the selected line is an "If-Then" statement, then the entire condition is cleared. This button is disabled when the cursor is on an "else" or "endif" condition.

• Click **Delete Line** to delete the selected line.

Note

If the selected line is the beginning of a conditional statement, then the entire "If-Then" block will be deleted along with the expressions that constitute the "If-Then" construct. If the selected line is part of the conditional "If-Then" construct—that is, the line only has "Else" or "Endif" in it—then the entire "If-Then" construct will be deleted.

- Click **Copy** to copy the selected line to the clipboard. You cannot copy keywords such as "**else**" or "**endif**."
- Click **Paste** to paste the content of the clipboard into a selected line. If the line already has a calculation in it, it is cleared before the content of the clipboard is pasted into it.
- Element **B** A drop-down menu with the following three commands:
 - **Insert Comment** Adds a comment to the calculation. Each comment is preceded by "//."
 - **Insert Condition** Adds an "If-Then" statement to the calculation.
 - **Insert Expression** Adds a mathematical expression to the calculation.
- Element C Also called the **Expression Editor**, this section is the work area where the comment, condition or expression is built

before being added to the Calculation Steps Viewer. There are four modes of the Expression Editor, depending upon what action is being performed:

Figure E-3.	Expression	Editor ·	- No	Action

Figure E-4. Expression Editor - Insert Comment

Edit Comment					
	Clear	Delete Item	Evaluate Exp	Done	

Figure E-5. Expression Editor - Insert Condition

- Edit Conc	dition					
If					== v _PI	•
		Clear	Delete Item	Evaluate Exp	Done	

Figure E-6. Expression Editor - Insert Expression

- Edit Expression
Two Component A: 💌 =
Clear Delete Item Evaluate Exp Done

The following commands allow you to interact with the Expression Editor:

- Click **Clear** to clear the content of the entire line. The line itself is not deleted.
- Click **Delete Item** to delete the currently active token. Each mathematical function, numeric data, and mathematical operation is treated as a token. The token to the right of the current cursor location is treated as the currently active token.
- Click **Evaluate Exp** to check the validity of the expression. If any errors are detected in the syntax, then an error will be reported in the Output window.

Note

This button is only active when the line being edited is an expression.

- Click **Done** to evaluate the expression and copy it to the Calculations Steps Viewer. If there are any errors in the expression, they are reported in the Output window.
- Element **D** This section contains calculator functions that can be used to build a mathematical expression. This section can be divided into two parts:

Figure E-7.	Calculator functions
-------------	----------------------

	1					2	
¥				7			V
x^y	SQRT	abs	(7	8	9	
sin	cos	tan)	4	5	6	×
log10	log2	In	е	1	2	3	•
and	or	xor		0	+/-		+

x^y	x to the power of y
SQRT	Square Root
abs	Absolute Value
sin	Sine
cos	Cosine
tan	Tan
log10	Logarithm to the base 10
log2	Logarithm to the base 2
ln	Logarithm to the base e
and	Logical AND
or	Logical OR
xor	Logical XOR
(Open bracket
)	Close bracket

• Section 1 - This section contains the following keys:

• Section 2 - This section contains the traditional calculator keys and can be used with your keyboard's **Numpad**.

Note

•

Make sure to engage your keyboard's Numlock before using the Numpad.

Section E - This section contains drop-down menus and buttons that allow you to create and select constants and variables that can be added to your mathematical expressions.

- **Constants** Allows you to select constants from a drop-down list.
- **Temporary Variables** Allows you to select temporary, usercreated variables from a drop-down list.
- System Variables Allows you to select system variables.
- Edit Temporary Variables Allows you to create variables.
- Edit Constants Allows you to create system-wide constants that can be used in user-defined calculations.
- Section **F** This section, called the **Output Display**, displays status information.
- 5. Use the following procedures to build your calculation in the Calculation Steps Viewer:
 - "Inserting a comment" on page E-7
 - "Inserting a conditional statement" on page E-9
 - "Inserting an expression" on page E-11
 - "Creating a constant" on page E-14
 - "Creating or editing a temporary variable" on page E-15
 - "Inserting a system variable" on page E-16
 - "Using user-defined calculations" on page E-17
- To see the result of the calculation, click Calculate. The results display in the Output window. To validate the calculation for errors, click Evaluate. The results of the validation check display in the Output window. To save the calculation and to close the *Edit Userdefined Calculation* window, click OK.
- 7. On the *User Defined Calculations* window, to save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

E.1 Inserting a comment

To add a comment to the calculation, do the following:

1. Click on the *Insert* drop-down list and select **Insert Comment**. A new line will be added to the **Calculation Steps Viewer** and the **Expression Editor** will switch to *Edit Comment* mode.

Figure E-8. Edit Comment mode

2. Enter the comment into the *Edit Comment* textbox and then click **Done**. The comment will be added to the **Calculation Steps Viewer**.

Figure E-9. Calculation Steps Viewer

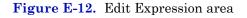
Calculation Steps : #1 This. Is a very improvident comment. Edit Comment Edit Comment. Clear All Clear Line Delete Line Copy Paste Insert Comment Edit Comment. Clear Delete Item Evaluate Exp Done	Edit User-defined Calculation - "Two Component Avg"
#1 Clear All Clear Line Delete Line Copy Paste Insert Comment Edit Comment This is a very important comment. Insert Comment Image: Comment comment.	Calculation Steps :
Clear All Clear Line Delete Line Copy Paste Insert Comment Edit Comment Insert Comment Insert Comment Insert Comment	#0
Clear All Clear Line Delete Line Copy Paste Insert Comment Edit Comment Insert Comment Insert Comment Insert Comment	#1 //This is a very important comment.
Edit Comment	
Edit Comment	Clear All Clear Line Delete Line Copy Paste Insert Comment
This is a very important comment.	
Clear Delete Item Evaluate Exo Done	This is a very important comment.
Liear Delete terri Evaluate externa Done	Chan Dubte Keen Furtherin Furt
	Liear Delete item EValuate Exp Done

E.2 Inserting a conditional statement

Figure E-10.	An exampl	e of a	conditional	statement
I Igui C LI IV.	r mi onampi	o or a	conditional	Statement

	User-defined Calculation - "Two Component Avg"
Calculat	ion Steps :
#0	
#1	if (Conc < Var1)
#2	xyz = Var2 + Var3
#3	else
#4	xyz = Conc
#5	endif
77.5	C Part
Clea	ar All Clear Line Delete Line Copy Paste Insert Condition
If	< 💌 Var1 💌
	Clear Delete Item Evaluate Exp Done
	Clear Delete Item Evaluate Exp Done

The **Expression Editor** in *Edit Condition* mode allows you to build the first line of the conditional statement:

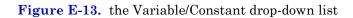

Figure E-11. The Expression Editor in Edit Condition mode

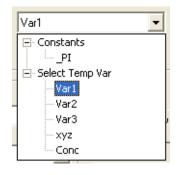
Regular expression	Variables/Constants
Edit Condition	
Clear Delete Item Evaluate Exp	Done
Relational operator	

Expressions are built using the **Expression Editor** in *Edit Expression* mode.

To add a conditional statement, do the following:

- 1. Click on the *Insert* drop-down list and select **Insert Condition**. A new line is added to the **Calculation Steps Viewer** and the **Expression Editor** switches to *Edit Condition* mode.
- 2. Add an expression. You can use constants, temporary variables, system variables, and the calculator functions to build the expression. For information on inserting system variables, see page E-16. For information on creating variables, see page E-15. For information on creating constants, see page E-14.




Edit Expre	ession	•	Var2	2 + Va	ır3/s	qrt(V	/ar2 - V	/ar3)
			Clea	r	Delet	e Item	Evalu	uate Exp Done
								Insert
х^у	SQRT	abs	(7	8	9	/	Constants
sin	cos	tan)	4	5	6	×	☐_PI Edit Temporary Temporary Variables Variables
log10	log2	In	е	1	2	3	•	Var3
and	ro	xor		0	+/-		+	System Variables Edit Constants
Nutnut :								

3. Select a relational operator from the drop-down list. You have the following options:

<	Less than
<=	Less than or equal
>	Greater than
>=	Greater than or equal
==	Equal
!=	Not equal

4. To add a variable or constant to the expression, click the *Variable/ Constant* drop-down list and select the appropriate item.

For information on creating variables, see page E-15. For information on creating constants, see page E-14.

5. Click **Done**. MON 20/20 validates the statement and if there are no errors, it adds it to the Calculation Steps Viewer.

Figure E-14. Calculation Steps Viewer

To complete the conditional statement, use the **Expression Editor** in *Edit Expression* mode to add the necessary mathematical expressions.

E.3 Inserting an expression

A mathematical expression has the following structure:

Variable = Regular expression

Figure E-15. Edit Expression area regular expression Edit Expression Two Component A· = Clear Delete Item Evaluate Exp Done variable

To add an expression to a conditional statement or calculation, do the following:

- 1. Click on the *Insert* drop-down list and select **Insert Expression**. A new line is added to the **Calculation Steps Viewer** and the **Expression Editor** switches to *Edit Expression* mode.
- 2. Select a variable from the *Variable* drop-down tree view. You can select either a temporary variable or you can set the expression you are building as the final result of your new user-defined calculation. For instance, if the user-defined calculation you are building is called 'User Calc 1,' then you can select **User Calc 1** from the **Final Result** tree view. For information on creating variables, see "Creating or editing a temporary variable" on page E-15.

Figure E-16. The Final Result tree view

xyz	•
🖃 Final Result	>
Two Compo	
🖃 Select Temp Va	
- Var1	≡
- Var2	
- Var3	-
···· xyz	~
<	

MON20/20 Software for Gas Chromatographs	User Manual
OCTOBER 2010	3-9000-745

3. Add a regular expression. You can use constants, temporary variables, system variables, and the calculator functions to build the expression. For information on inserting system variables, see page E-16. For information on creating variables, see page E-15. For information on creating constants, see page E-14.

Figure E-17. The Edit Expression area

Var1		•	Var2	2 + Va	nr3/s	qrt(V	/ar2 - 1	Var3)
			Clea	ar	Delet	e Item	Eva	luate Exp Done
								Insert
x^y	SQRT	abs	(7	8	9	1	Constants
sin	cos	tan	1	4	5	6	×	Edit Temporary Variables
								Temporary Variables Variables
log10	log2	ln	е	1	2	3	•	Var3
and	or	xor		0	+/-		+	System Variables Edit Constant:
								Component Data Table 1.Ret Time 💌

4. Click **Done**. MON 20/20 validates the statement and if there are no errors, it adds it to the **Calculation Steps Viewer**.

Figure E-18. The Calculation Steps Viewer

Edit User-defined Calculation - "Two Component Avg"	
Calculation Steps :	
#0	
#1 Var1 = Var2 + Var3 / sqrt(Var2 - Var3)	
Clear All Clear Line Delete Line Copy Paste Insert Expression	_
- Edit Expression-	
Var1 Var2 + Var3 / sqrt(Var2 - Var3)	
Clear Delete Item Evaluate Exp Done	

E.4 Creating a constant

To create a constant that you can use in building a calculation, do the following:

1. From the *Edit User-defined Calculation* window, click **Edit Constants**. The *Edit Constants* window displays, showing all the constants that have been created so far for the GC.

Figure E-19. The Edit Constants window

				-
	Label	Value 0.0		Comment
		0.0		
				Þ
4			Delete	
4			Delete	
4			Delete	

2. To create a new constant, click **Insert before**. A new row will be added to the *USER_CALC_CONSTANTS* table.

Note

To delete a constant, select it in the table and click Delete.

3. Double-click the *Label* cell and enter a name for the constant.

Note

To edit any cell, double-click it.

- 4. Double-click the *Value* cell and enter a value for the constant.
- 5. Use the *Comment* cell to store information that is relevant for the constant.
- 6. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

E.5 Creating or editing a temporary variable

To create a temporary variable that you can use in building a calculation, do the following:

1. From the *Edit User-defined Calculation* window, click **Edit Temporary Variables**. The *Edit Temporary Variables* window displays, showing all the temporary variables that have been created so far for the user-defined calculation.

Name	Comment

Figure E-20. The Edit Temporary Variables window

2. To create a new temporary variable, click **Insert**. A new row will be added to the table.

Note

To delete a variable from this window, select it in the table and click Delete.

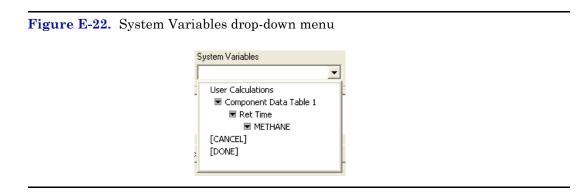
- 3. Double-click the *Name* cell and enter a name for the variable.
- 4. Use the *Comment* cell to store information that is relevant for the variable.
- 5. To save the changes without closing the window, click **Save**. To save the changes and close the window, click **OK**.

E.6 Inserting a system variable

To insert a system variable into the Expression Editor, do the following:

From the *Edit User-defined Calculation* window, click on the *System Variables* drop-down arrow.

For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.


The selected system variable displays in the *System Variables* drop-down box and in the **Expression Editor**.

#0												
<mark>#1</mark> #2												
Clear A Edit Cond If Co		Clear L ent Da		Delete			ROPA	Paste		Insert Con	dition	
			Clea	ır	Dele	te Item	Ev	aluate Exp	Do	ne		
x^y sin	SQRT cos	abs tan	[]	7	8 5	9	/ ×	Insert Constants Temporat	-	es	×	Edit Temporary Variables
log10 and Output :	log2 or	In xor	e	1	2 +/-	3	+	System V Compon		Table 1.R	▼ et Time ▼	Edit Constants
e origeoit :												

Figure E-21. The Expression Editor

E.7 Using user-defined calculations

You can use a previously-created user-defined calculation when building new calculations by clicking on the *System Variables* drop-down arrow on the *Edit User-defined Calculation* window.

For a demonstration of how to use the context-sensitive variable selector, see "Using the context-sensitive variable selector" on page 1-42.

The selected system variable displays in the *System Variables* drop-down box and in the **Expression Editor**.

Edit User-defined Calculation - "User Calc 2" Calculation Steps : #0 #1 User Calc 2 = User Defined Calculations.Calc Result.User Calc 1	
Clear All Clear Line Delete Line Copy Paste Insert Expression Edit Expression User Calc 2 User Calc 2	
x^y SQRT abs (7 8 9 / Constants sin cos tan) 4 5 6 x Temporary Variables log10 log2 ln e 1 2 3 - System Variables and or xor 0 +/- . + User Defined Calculations.Calc Re	Edit Temporary Variables
Success Calculate Evaluate Ok	Cancel

Figure E-23. The Expression Editor

WARRANTY CLAIM PROCEDURES

To make a warranty claim, you, the Purchaser, must:

- 1. Provide Daniel Measurement and Control, Inc. or Rosemount Analytical, Inc. with proof of the Date of Purchase and proof of the Date of Shipment of the product in question.
- 2. Return the product to Daniel Measurement Services (DMS) within 12 months of the date of original shipment of the product, or within 18 months of the date of original shipment of the product to destinations outside of the United States. The Purchaser must prepay any shipping charges. In addition, the Purchaser is responsible for insuring any product shipped for return, and assumes the risk of loss of the product during shipment.
- 3. To obtain warranty service or to locate the nearest DMS office, sales office, or service center, do one of the following:
 - Call (713) 827-6380
 - Fax a request to (713) 827-6312
 - Write to:

Daniel Measurement Services 11100 Brittmore Park Drive Houston, Texas 77041

- Contact DMS via **www.emersonprocess.com/daniel**
- 4. When contacting DMS for product service, the Purchaser is asked to provide information as indicated on the following page entitled "Customer Repair Report".
- 5. For product returns from locations outside the United States, it will be necessary for you to obtain the import consignment address so that DMS's customs broker can handle the importation with the U.S. Customs Service.
- 6. DMS offers both on call and contract maintenance service designed to afford single source responsibility for all its products.
- 7. DMS reserves the right to make changes at any time to any product to improve its design and to insure the best available product.

This page is intentionally left blank.

CUSTOMER REPAIR REPORT

FOR SERVICE, COMPLETE THIS F TO CUSTOMER SERVICE AT THE			FECTED EQUIPMENT
COMPANY NAME:			
TECHNICAL CONTACT:		PHONE:	
REPAIR P. O. #:	IF WARRANTY, U	NIT S/N:	
INVOICE ADDRESS:			
SHIPPING ADDRESS:			
DESCRIPTION OF PROBLEM:			
WHAT WAS HAPPENING AT TIME			
ADDITIONAL COMMENTS:			
REPORT PREPARED BY:		TITLE:	
IF YOU REQUIRE TECHNICAL AS DEPARTMENT AT:	SISTANCE, PLEASE FAX (OR WRITE THE CUST	OMER SERVICE
DANIEL MEASUREMENT SERVIC DIVISION OF EMERSON PROCESS ATTN: CUSTOMER SERVICE 11100 BRITTMOORE PARK DRIVE HOUSTON, TEXAS 77041	S MANAGEMENT		PHONE: (713) 827-6380 FAX: (713) 827-6312

FOR FASTEST SERVICE CONTACT DANIEL MEASUREMENT SERVICES VIA OUR WEBSITE: www.emersonprocess.com/daniel

This page is intentionally left blank.

Daniel Measurement and Control, Inc., Daniel Measurement Services, Inc., and Rosemount Analytical Inc., Divisions of Emerson Process Management, reserves the right to make changes to any of its products or services at any time without prior notification in order to improve that product or service and to supply the best product or service possible.

www.emersonprocess.com

